Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
В протоколе описан метод введения контролируемого генетического разнообразия в геном вируса гепатита С путем комбинирования полноразмерного синтеза мутантной РНК с использованием подверженной ошибкам ПЦР и обратной генетики. Метод обеспечивает модель селекции фенотипа и может быть использован для геномов вирусов с положительной РНК длиной 10 кб.
Отсутствие удобного метода итеративной генерации разнообразных полноразмерных вариантов вируса затрудняет изучение направленной эволюции РНК-содержащих вирусов. Интегрируя ПЦР с полным геномом, подверженным ошибкам, и обратную генетику, можно индуцировать мутагенез случайных замен на уровне генома. Мы разработали метод, использующий эту технику, для синтеза различных библиотек для идентификации вирусных мутантов с фенотипами, представляющими интерес. Этот метод, называемый полноразмерным синтезом мутантной РНК (FL-MRS), обладает следующими преимуществами: (i) возможность создания большой библиотеки с помощью высокоэффективной одноэтапной ПЦР, подверженной ошибкам; (ii) возможность создания групп библиотек с различными уровнями генетического разнообразия путем манипулирования достоверностью ДНК-полимеразы; (iii) создание полноразмерного ПЦР-продукта, который может непосредственно служить матрицей для синтеза мутантной РНК; и (iv) способность создавать РНК, которая может быть доставлена в клетки-хозяина в качестве неотобранного входного пула для скрининга вирусных мутантов желаемого фенотипа. Используя подход обратной генетики, мы обнаружили, что FL-MRS является надежным инструментом для изучения вирусно-направленной эволюции на всех этапах жизненного цикла вируса гепатита С, изолята JFH1. Этот метод, по-видимому, является бесценным инструментом, позволяющим использовать направленную эволюцию для понимания адаптации, репликации и роли вирусных генов в патогенезе и противовирусной резистентности у РНК-вирусов с положительным смыслом.
Прямой генетический скрининг начинается с интересующего нас вирусного фенотипа, а затем, путем секвенирования его генома и сравнения его с геномом исходного штамма, предпринимается попытка идентифицировать мутацию (мутации), вызывающую этот фенотип. В отличие от этого, при обратном генетическом скрининге случайные мутации вводятся в ген-мишень с последующим исследованием результирующего фенотипа (фенотипов)1. Для подхода обратной генетики мутагенез in vitro является наиболее широко используемым методом для создания пула вариантов, которые впоследствии проверяются на наличие интересующих фенотипов. Сообщалось о различных генетических инструментах для достижения полногеномного случайного мутагенеза РНК-вирусов, включая подверженную ошибкам ПЦР (ep-PCR)2,3, кольцевое расширение полимеразы4 и мутагенез вставки мю-транспозона 5,6,7. Последние два метода дают библиотеки с ограниченным разнообразием последовательностей и склонны к введению больших вставок и делеций, которые являются очень летальными для вирусов и серьезно ограничивают восстановление инфекционных вариантов вируса.
ep-ПЦР является хорошо известным мощным методом мутагенеза, широко используемым в белковой инженерии для получения мутантных ферментов для селекции фенотипов с желаемыми свойствами, такими как повышенная термическая стабильность, субстратная специфичность и каталитическая активность 8,9,10. Эта методика проста в исполнении, потому что требует простого оборудования, не требует утомительных манипуляций, использует имеющиеся в продаже реагенты и является быстрой; Более того, он генерирует высококачественные библиотеки.
Здесь мы разработали новый метод синтеза полноразмерной мутантной РНК (FL-MRS) для получения полных геномов вируса гепатита С (HCV) путем интеграции ep-PCR, которая индуцирует мутагенез случайных замещений по всему геному и обратную генетику. Даже вставка или делеция одного нуклеотида крайне вредна для вирусов с положительной РНК ([+]ssRNA); следовательно, мутагенез замещения на основе ПЦР является предпочтительным методом для итеративной генерации больших, разнообразных библиотек полных (+)ss РНК вирусных геномов с хорошей жизнеспособностью.
FL-MRS — это простой подход, который может быть применен к любому РНК-вирусу с положительным смыслом и длиной генома ~10 кб благодаря тщательной разработке набора праймеров, который связывается с вирусным клоном кДНК. pJFH1 представляет собой инфекционный клон кДНК, который кодирует генотип вируса гепатита С 2a и может повторять все этапы жизненного цикла вируса. Используя подход FL-MRS, мы продемонстрировали синтез случайно мутагенизированных полногеномных библиотек (мутантных библиотек [ML]) для получения репликационно-компетентных вариантов JFH1, для которых не было предварительных знаний о свойствах, связанных с мутациями. При воздействии противовирусного препарата некоторые из вариантов вируса быстро преодолевали лекарственное давление с желаемым фенотипическим изменением. Используя описанный здесь протокол, можно создать множество вариантов вируса, что создает возможности для изучения эволюции (+)ssRNA-вирусов.
ПРИМЕЧАНИЕ: Используемый здесь штамм JFH1 (WT) был любезным подарком от Такадзи Вакиты, Национального института инфекционных заболеваний. Клеточная линия гепатомы человека, Huh7.5, была любезным подарком от Чарльза Райса из Рокфеллеровского университета. Схема метода представлена на рисунке 1.
1. Полногеномный мутагенез замещения JFH1 с использованием подверженной ошибкам ПЦР
2. Синтез вирусной РНК
3. Оценка доли мутаций в продуктах ep-ПЦР (мутантные библиотеки)
ПРИМЕЧАНИЕ: На этом этапе доля нуклеотидов мутирует путем субклонирования продукта, полученного на этапе 2. было продемонстрировано преимущество использования ЭП-ПЦР для создания генетической гетерогенности с использованием двух полногеномных мутантных библиотек (ML50 и ML25) и клональных вирусных РНК, полученных из pJFH1. Доля мутаций была оценена в гене HCV NS5A, который также был фенотипическим геном считывания (лекарственной устойчивости) в этом исследовании.
4. Трансфекция вирусной РНК клеточной линии Huh7.5
ПРИМЕЧАНИЕ: Используйте материалы для культивирования тканей, не содержащие РНКазы/ДНКазы, и работайте в стерильном шкафу биобезопасности класса II. Работать в рекомендованном помещении для локализации в соответствии с рекомендациями по биобезопасности организации.
5. Производство вирусов
6. Количественная оценка титров вирусов
7. Выбор варианта вируса с лекарственной устойчивостью
В соответствии с процедурами, описанными на рисунке 1, можно создать множество полноразмерных вариантов гепатита С и провести скрининг на наличие фенотипов лекарственной устойчивости, представляющих интерес. Полногеномные мутантные библиотеки синтезировали с исполь?...
В этом исследовании мы подробно описали простую и быструю процедуру FL-MRS, которая объединяет ep-PCR18 и обратную генетику для синтеза полногеномных библиотек HCV, которые затем могут быть использованы в системе клеточных культур для создания репликационно-компетентных вариант...
Авторам нечего раскрывать.
Финансовая поддержка (номер гранта BT/PR10906/MED/29/860/2014) для этого исследования была предоставлена Департаментом биотехнологии правительства Индии.
Name | Company | Catalog Number | Comments |
1 kb plus DNA ladder | Thermo Fisher | 10787018 | |
1.5 ml centrifuge tube | Tarsons | 500010 | |
15 ml centrifuge tube | Tarsons | 546021 | |
35 mm cell culture dish | Tarsons | 960010 | |
50 ml centrifuge tube | Tarsons | 546041 | |
Acetic acid | Merck | A6283 | |
Agarose | HiMedia | MB080 | |
Agrose gel electrophoresis unit | BioRad | 1704406 | |
Biosafety Cabinet, ClassII | ESCO | AC2 4S | |
Bovine serum albumin | HiMedia | MB083 | |
Centrifuge | Eppendorf | 5424-R | |
CFX Connect Real-Time PCR Detection System | BioRad | 1855201 | |
Cloning plates 90 mm | Tarson | 460091 | |
CO2 Incubator | New Brunswick | Galaxy 170R | |
Colibri Microvolume Spectrometer | Titertek-Berthold | 11050140 | |
DAB Substrate Kit | Abcam | ab94665 | |
dATP Solution | NEB | N0440S | |
Deoxynucleotide (dNTP) Solution Set | NEB | N0446 | |
Diethyl Pyrocarbonate (DEPC) | SRL chemical | 46791 | |
Dimethyl sulphoxide (DMSO) | HiMedia | MB058 | |
DMEM high glucose | Lonza | BE12-604F | |
EcoR1-HF | NEB | R3101 | |
EDTA tetrasodium salt dihydrate | HiMedia | GRM4918 | |
Ethidium Bromide | Amresco | X328 | |
Fetal bovine serum | Gibco | 26140079 | |
Formaldehyde | Fishser Scientific | 12755 | |
Gel Documentation System | ALPHA IMAGER | ||
Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP | Thermo Fisher | A16066 | |
Hydrogen peroxide 30% | Merck | 107209 | |
Inverted microscope | Nickon | ECLIPSE Ts2 | |
LB broth | HiMedia | M1245 | |
Lipofectamine 2000 | Thermo Fisher | 116680270 | transfection reagent |
Mechanical Pipette Set | Eppendorf | 3120000909 | |
Methanol | Merck | 106009 | |
Micro Tips 0.2-10 µl | Tarsons | 521000 | |
Micro Tips 10 - 100 µl | Tarsons | 521010 | |
Micro Tips 200-1000 µl | Tarsons | 521020 | |
MOPS buffer | GeNei | 3601805001730 | |
Nonessential aminoacids (NEAA) | Gibco | 11140050 | |
One Shot TOP10 Chemically Competent E. coli | Invitrogen | C404010 | E.coli DH5α |
Opti-MEM | Gibco | 1105-021 | minimal essential medium |
PCR tubes 0.2 ml | Tarsons | 510051 | |
Pencillin/streptomycin | Gibco | 15070063 | |
pGEM-T Easy Vector System | Promega | A1360 | T-vector DNA |
Phosphate buffer saline (PBS) | HiMedia | TI1099 | |
Phusion High-Fidelity DNA Polymerase | NEB | M0530S | |
Pibrentasvir | Cayman Chemical | 27546 | |
Pipette controller | Gilson | F110120 | |
Platinum Taq DNA Polymerase | Thermo | 10966034 | |
Prism | GraphPad | statistical analysis software | |
QIAamp Viral RNA Mini kit | Qiagen | 52904 | viral isolation kit |
QIAprep Spin Miniprep Kit | Qiagen | 27106 | |
QIAquick PCR Purification Kit | QIAGEN | 28104 | cokum purification kit |
RNeasy Mini Kit | QIAGEN | 74104 | RNA cleanup kit |
Serological Pipettes 25 ml | Thermo Fisher | 170357N | |
Serological Pipettes 5 ml | Thermo Fisher | 170355N | |
Serological Pipettes10 ml | Thermo Fisher | 170356N | |
Single strand RNA Marker 0.2-10 kb | Merck | R7020 | |
Skim milk | HiMedia | M530 | |
Sodium azide 0.1 M solution | Merck | 8591 | |
SuperScript III Reverse Transcriptase | Invitrogen | 18080044 | reverse transcriptase |
T100 Thermal Cycler | BioRad | 1861096 | |
T175 cell culture flask | Tarsons | 159910 | |
T25 cell culture flask | Tarsons | 950040 | |
T7 RiboMax Express Large Scale RNA Production System | Promega | P1320 | Large Scale RNA Production System |
T75 cell culture flask | Tarsons | 950050 | |
Taq DNA Polymerase | Genetix Biotech (Puregene) | PGM040 | |
TaqMan RNA-to-CT 1-Step Kit | Applied Biosystems | 4392653 | |
TaqMan RNA-to-CT 1-Step Kit | Thermo Fisher | 4392653 | commercial qRT-PCR kit |
TOPO-XL--2 Complete PCR Cloning Kit | Thermo Fisher | K8050-10 | kit for cloning of long-PCR product |
Tris base | HiMedia | TC072 | |
Trypsin-EDTA solution | HiMedia | TCL007 | |
Tween 20 | HiMedia | MB067 | |
Vacuum Concentrator | Eppendorf, Concentrator Plus | 100248 | |
Water bath | GRANT | JBN-18 | |
Xba1 | NEB | R0145S |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены