A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The genome of the influenza A virus consists of eight separate complexes of RNA and proteins, termed viral ribonucleoprotein complexes (vRNPs). This paper describes the glycerol gradient purification and transmission electron microscopy visualization of influenza A vRNPs.
Part 1: Disruption of the Influenza A Virion
Part 2: Glycerol Gradient Sediment Velocity Centrifugation
Part 3: Analysis of the Glycerol Gradient Fractions by SDS Polyacrylamide Gel Electrophoresis
Part 4: Concentration of the vRNP Fractions
Part 5: Negative Staining of vRNPs
Part 6: Representative Results:
Figure 1
As influenza A NP (~56 kDa) is the major protein found in viral ribonucleoprotein complexes, the NP band generally is the strongest band in the fractions containing the vRNPs (Figure 1). In addition to NP, each influenza vRNP also contains a copy of a trimeric RNA polymerase (molecular weights of 82, 86 and 86.5 kDa) complex. These may or may not be visible by Coomassie blue staining because their abundance is low compared to that of NP. The polymerases, however, can be detected if, instead of a Commassie blue stain, a silver stain of the gel is performed. The influenza matrix protein M1 (~ 28 kDa) should be minimally present in the fractions where the NP protein peak fractions are present.
Figure 2
Negatively-stained vRNPs as visualized under a transmission electron microscopy should yield vRNPs that resemble rod-shaped particles with variable length that are approximately 30 nm to 120 nm in length (Figure 2a). The oligomeric NP is organized as a chain of NP molecules that is further folded into a double helical repeat structure, so loops on either ends of these rod-shaped particles can sometimes be seen (Figure 2b).
The purification of vRNPs is based on the procedure described by Kemler et al. (1994).1 We and others have also used this protocol to isolate vRNPs to study their nuclear import.2,4,5
We recommend the use of RNase-free tips and tubes when manipulating vRNPs because the viral genome is composed of RNA, and therefore degrades easily in the presence of RNA. In addition, all buffers should be made in water that is RNase free. The protocol described here was performe...
This work was supported by grants from the Canada Foundation for Innovation (CFI), the Canadian Institute of Health Research (CIHR), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Name | Company | Catalog Number | Comments | |
H3N2 X-31 A/AICHI/68 influenza A | Charles River Laboratories | 490715 | ||
Tris | Sigma | T1503 | ||
MES | Sigma | M-8250 | ||
Glycerol | Fisher | G33-1 | ||
Octylglucoside | Sigma | O-8001 | ||
Lysolecithin | Sigma | L-4129 | ||
Dithiothreitol | Sigma | D-9779 | ||
Coomassie brilliant blue G-250 | Kodak | 1367796 | ||
diethyl pyrocarbonate (DEPC)-treated water | Invitrogen | 750024 | ||
Uranyl Acetate | Ted Pella | 19481 | ||
Ammonium Molybdate | Fisher | A-674 | ||
Optima MAX-E Ultracentrifuge | Beckman Coulter | 434491 | ||
MLS-50 Rotor Package, Swinging Bucket | Beckman Coulter | 367280 | ||
TLA-120.2 Rotor Assembly, Fixed-Angle, Titanium | Beckman Coulter | 362046 | ||
Eppendorf Thermomixer | Brinkman | 022670000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved