A subscription to JoVE is required to view this content. Sign in or start your free trial.
We have modified the conventional yeast two-hybrid screening, an effective genetic tool in identifying protein interaction. This modification markedly shortens the process, reduces the workload, and most importantly, reduces the number of false positives. In addition, this approach is reproducible and reliable.
Progranulin (PGRN), also known as granulin epithelin precursor (GEP), is a 593-amino-acid autocrine growth factor. PGRN is known to play a critical role in a variety of physiologic and disease processes, including early embryogenesis, wound healing 1, inflammation 2, 3, and host defense 4. PGRN also functions as a neurotrophic factor 5, and mutations in the PGRN gene resulting in partial loss of the PGRN protein cause frontotemporal dementia 6, 7. Our recent studies have led to the isolation of PGRN as an important regulator of cartilage development and degradation 8-11. Although PGRN, discovered nearly two decades ago, plays crucial roles in multiple physiological and pathological conditions, efforts to exploit the actions of PGRN and understand the mechanisms involved have been significantly hampered by our inability to identify its binding receptor(s). To address this issue, we developed a modified yeast two-hybrid (MY2H) approach based on the most commonly used GAL4 based 2-hybrid system. Compared with the conventional yeast two-hybrid screen, MY2H dramatically shortens the screen process and reduces the number of false positive clones. In addition, this approach is reproducible and reliable, and we have successfully employed this system in isolating the binding proteins of various baits, including ion channel 12, extracellular matrix protein 10, 13, and growth factor14. In this paper, we describe this MY2H experimental procedure in detail using PGRN as an example that led to the identification of TNFR2 as the first known PGRN-associated receptor 14, 15.
1. Background information
The yeast two-hybrid system is a powerful genetic technique used to discover protein-protein interactions 16, 17. Several kinds of 2-hybrid systems, such as lexA-based systems, the Sos Recruitment System, and bacteria- or mammalian cell-based 2-hybrids, are commercial available, this paper specifically focuses on the modifications of the most commonly used GAL4 based yeast 2-hybrid system. Briefly, the method is based on the properties of the yeast GAL4 protein that consists of separable domains responsible for DNA-binding and transcriptional activation. The bait protein is expressed as a fusion to the GAL4 DNA-binding domain (DNA-BD), while the prey proteins are expressed as fusions to the GAL4 activation domain (AD). Interaction between bait and prey fusion proteins leads to the transcriptional activations of GAL4-binding sites containing reporter genes that are integrated into the yeast genome. The principle of Y2H is illustrated in Fig. 1 and the experimental procedure is summarized in Fig. 2.
2. Required materials and solutions
3. Bait generation (pDBLeu-PGRN)
A cDNA fragment encoding PGRN lacking signal peptide (a.a.21-588) was directionally cloned into the Sal I-Not I sites of the pDBLeu vector (the ProQuest two-hybrid system, Invitrogen), keeping the same translation reading frame as the GAL4 DNA Binding Domain to generate pDBLeu-PGRN.
4. Small scale transformation of bait plasmid
5. Bait validation
Before performing yeast two-hybrid screen, test pDBLeu-PGRN for self-activation and determine the basal expression levels of the HIS3 reporter gene. This test determines whether baits activate transcription and whether the self-activation can be neutralized by inhibitors. 3-Amino-1, 2, 4-triazole (3-AT) is a competitive inhibitor of the HIS3-gene product and can be used to titrate the minimum level of HIS3 expression required for growth on histidine-deficient media.
6. cDNA library screening
The pDBLeu-PGRN plasmid is introduced into MaV203 using a small-scale transformation as described above. To introduce pPC86-library (Invitrogen) into MaV203 (pDBLeu-PGRN), the procedure described below typically gives ~4 x 104 colonies with 0.5 μg of plasmid library DNA. Hence, 2.5 x 106 yeast transformants will require ~30.0 μg pPC86-cDNA library plasmid DNA, 25 transformations, and fifty 10-cm plates (SD-Leu-Trp-His-Ura+3AT).
7. X-gal assay
8. Retransformation assay
Prey fusion proteins (AD-Y) isolated from library screening should retain the interaction with bait fusion protein (DB-X) to induce the report genes, and the retransformation of prey clones and bait construct into yeast can further eliminate false positives and facilitate additional analysis.
9. Sequencing and bioinformatics analysis
Sequence the plasmid DNA that was isolated from likely true positive clones, compare these sequences to those in the GenBank using the BLAST program, and identify those two-hybrid clones that correspond to known genes. Sequencing data showed that two of the 12 positives obtained above were cell surface TNFR2 (TNFRSF1B/CD120b; Accession #NM_130426). In addition, the interaction between PGRN and TNFR was verified using various protein-protein interaction assays, including in vitro Solid-phase binding assay, Co-immunoprecipitation, Surface plasmon resonance analysis, and Flow cytometry assay 14.
10. Representative Results
The flow chart of the screening is outlined in Fig. 3. Typically 50-100 positive clone candidates will be obtained at this step. We initially isolated 54 positive clone candidates among 2.5 million transformants screened with the PGRN bait. Positive clone candidates were then verified by performing X-gal assay. Typically, approximately 50% false positive clones are removed via X-gal assay. We obtained 23 positive clone candidates at this step for the PGRN bait (Fig. 4). Retransformation of the prey clones and bait construct into yeast further eliminate false positives and clones that still activate the reporter genes likely represent the true positives. Typically, approximately 50% positive clone candidates will be removed. We finally isolated 12 positive clones that interact with PGRN in yeast.
Figure 1. Principle of yeast two-hybrid system
Figure 2. Pipeline of identifying protein binding partners using yeast two-hybrid system
Figure 3. Flow chart of screening yeast two-hybrid library. Click here to view a full-sized version of this image.
Figure 4. Beta-Galactosidase assay of positive clone candidates. A, Positive clones obtained from library screen were transferred to YPD plate and incubated at 30°C overnight; B, All colonies on YPD plate were transferred to nitrocellulose membranes and beta-galactosidase assay performed.
Yeast two-hybrid screening has proven to be an effective tool in identifying protein interaction 16, 17. Compared with other approaches for identifying protein-binding partners, such as biochemical co-purification and protein chips, yeast two-hybrid system is a sensitive genetic approach that can be used for screening very high numbers of coding sequences in a relatively simple experiment; in addition, it detects the in vivo interaction and does not need complicated protein purification. Of course yeast two-hy...
No conflicts of interest declared.
This work was funded by NIH research grants K01AR053210, R01AR061484 and a grant from National Psoriasis Foundation.
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | |
ProQuest two-hybrid system | Invitrogen | 10835 | |
YPD Growth Medium | Clontech | 630409 | |
YPD Agar Medium | Clontech | 630410 | |
Minimal SD agar Base | Clontech | 630412 | |
-Leu DO Supplement | Clontech | 630414 | |
-Leu/-Trp DO Supplement | Clontech | 630417 | |
-His/-Leu/-Trp/-Ura DO Supplement | Clontech | 630425 | |
3-Amino-1,2,4-Triazole (3AT) | Sigma-Aldrich | A8056 | |
Luria broth (LB) | Sigma-Aldrich | L3022 | |
X-Gal | Invitrogen | 15520-034 | |
Sonicated Salmon Sperm DNA | Stratagene | 201190 | |
Ampicillin | AMRESCO | 0339 | |
Kanamycin Sulfate | Invitrogen | 11815-024 | |
Subcloning Efficiency™ DH5α™ Competent Cells | Invitrogen | 18265-017 | |
Trizma® base | Sigma-Aldrich | T6066 | |
Lithium acetate | Sigma-Aldrich | L4158 | |
Ethylenediaminetetraacetic acid | Sigma-Aldrich | ED | |
Nitrocellulose Membrane | Bio-Rad | 162-0115 | |
10-cm petri dish | ITI Scientific | CT-903 | |
Incubator (30 °C) | ATR (Ecotron) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved