A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a super-resolution imaging method to probe the structural organization of the bacterial FtsZ-ring, an essential apparatus for cell division. This method is based on quantitative analyses of photoactivated localization microscopy (PALM) images and can be applied to other bacterial cytoskeletal proteins.
Bacterial cell division requires the coordinated assembly of more than ten essential proteins at midcell1,2. Central to this process is the formation of a ring-like suprastructure (Z-ring) by the FtsZ protein at the division plan3,4. The Z-ring consists of multiple single-stranded FtsZ protofilaments, and understanding the arrangement of the protofilaments inside the Z-ring will provide insight into the mechanism of Z-ring assembly and its function as a force generator5,6. This information has remained elusive due to current limitations in conventional fluorescence microscopy and electron microscopy. Conventional fluorescence microscopy is unable to provide a high-resolution image of the Z-ring due to the diffraction limit of light (~200 nm). Electron cryotomographic imaging has detected scattered FtsZ protofilaments in small C. crescentus cells7, but is difficult to apply to larger cells such as E. coli or B. subtilis. Here we describe the application of a super-resolution fluorescence microscopy method, Photoactivated Localization Microscopy (PALM), to quantitatively characterize the structural organization of the E. coli Z-ring8.
PALM imaging offers both high spatial resolution (~35 nm) and specific labeling to enable unambiguous identification of target proteins. We labeled FtsZ with the photoactivatable fluorescent protein mEos2, which switches from green fluorescence (excitation = 488 nm) to red fluorescence (excitation = 561 nm) upon activation at 405 nm9. During a PALM experiment, single FtsZ-mEos2 molecules are stochastically activated and the corresponding centroid positions of the single molecules are determined with <20 nm precision. A super-resolution image of the Z-ring is then reconstructed by superimposing the centroid positions of all detected FtsZ-mEos2 molecules.
Using this method, we found that the Z-ring has a fixed width of ~100 nm and is composed of a loose bundle of FtsZ protofilaments that overlap with each other in three dimensions. These data provide a springboard for further investigations of the cell cycle dependent changes of the Z-ring10 and can be applied to other proteins of interest.
1. Sample Preparation
[1] Note: The above induction protocol (steps 1.1-1.3) has been optimized for the expression system of strain JB281. Detailed induction conditions may vary for other expression systems or proteins of interest.
2. Assembly of the Imaging Chamber
3. Image Acquisition
[2] Note: The integrated intensity of the green fluorescence of a cell is directly proportional to the total number of FtsZ-mEos2 molecules expressed in the cell. The 488-nm excitation power and ensemble fluorescence acquisition settings should be kept constant for all cells so that the relative FtsZ-mEos2 expression levels in different cells can be compared.
[3] Note: Fixed cells are imaged with the Neutral Density (ND) filter (Figure 1, Optical Component #5) in place in order to achieve a slow activation rate so that each individual molecule can be accurately identified. The ND filter is removed when imaging live cells to increase the activation rate, while maintaining a low probability of two molecules being activated simultaneously in a diffraction-limited area. The faster rate applied to live-cell imaging is needed to decrease the total acquisition time, thereby "freezing" the Z-ring in time and limiting the effect of photodamage to the cell.
[4] Note: The numbers of frames acquired were optimized for our system and are dependent on the particular cellular structure, labeling density, activation rate and whether exhausting the entire pool of fluorophores is important for analysis. In live cells, it is important to obtain a sufficient number of localizations in as short a period of time as possible to avoid the blurring of the image due to movement of the cellular structure.
4. PALM Image Construction
[5] Note: The minimum required localization precision was determined empirically for each imaging method by plotting the precisions of all molecules for a given sample and selecting an appropriate cutoff.
5. PALM Image Analysis
[6] Note: We used total internal reflection PALM (TIR-PALM, Figure 1 and 5) to restrict the activation and excitation to a thin layer (~200 nm) above the cell/glass interface. so that only FtsZ molecules associated with the membrane closest to the coverslip will be detected.
Illustrated in Figure 3Aiv is a two-dimensional, super-resolution rendering of the Z-ring generated from the PALM imaging method described above. Below, we summarize qualitative and quantitative information that can be obtained from them.
Qualitatively, we observed that the Z-ring is an irregular structure that adopts multiple configurations (single band or helical arc) that are not distinguishable in conventional fluorescence images (compare Figure 3A-Dii
PALM images contain information about molecule counts and positions within a cell, allowing detailed analysis of the distribution and arrangement of target protein molecules that is difficult to achieve by other means. Below we outline precautions that should be taken to extract accurate quantitative information while maintaining the biological relevance of PALM images. We also explore the information that can be best obtained using live vs. fixed cells. Finally, we suggest avenues for obtaining additional super-...
No conflicts of interest declared.
Grant: 5RO1GM086447-02.
Name | Company | Catalog Number | Comments |
50 x MEM Amino Acids | Sigma | M5550 | |
100 x MEM Vitamins | Sigma | M6895 | |
IPTG | Mediatech | 46-102-RF | |
16% Paraformaldehyde | Electron Micrsocopy Sciences | 15710-S | |
SeaPlaque GTG Agarose | Lonzo | 50111 | |
50 nm Gold Beads | Microspheres-Nanospheres | 790113-010 | |
FCS2 Imaging Chamber | Bioptechs | ||
Stage Adaptor | ASI | I-3017 | |
Inverted Microscope | Olympus | IX71 | |
1.45 NA, 60x Objective | Olympus | ||
IXON EMCCD Camera | Andor Technology | DU897E | |
488-nm Sapphire Laser | Coherent | ||
561-nm Sapphire Laser | Coherent | ||
405-nm CUBE Laser | Coherent |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved