JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Primary mouse cardiomyocyte cultures are one of the pivotal tools for the investigation of myofibrillar organization and function. The following protocol describes the isolation and culture of primary cardiomyocytes from neonatal mouse hearts. The resulting cardiomyocyte cultures may be subsequently used for a variety of biomechanical, biochemical and cell-biological assays.

Abstract

Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes.

The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.

Introduction

The earliest reports for the successful dissociation and culture of rodent heart cells dates back to the 1960's 1,2. Even then, Harary and Farley noticed that cultured cardiomyocytes "may provide a unique system for the study of the requirements of the periodic contractility [, and may] provide a means of determining the contribution of various metabolic pathways for the [beating] process". Although Harary and Farley isolated and cultured cardiomyocytes from young rats, and the original protocol has been adapted and modified by many scientists over the years, the general isolation and culturing procedure has not greatly changed. However, better enzymes 3, standardized solutions 4,5, and the addition of the reversible channel and myosin ATPase inhibitor BDM to protect cells during the isolation procedure 6-9 has significantly improved cell-yield and viability.

Adult vs. neonatal cardiomyocytes

Cardiomyocytes isolated and cultured from neonatal mice or rats have several advantages over cultures of adult cardiomyocytes. Foremost, the isolation procedure for neonatal mouse or rat hearts is easier and less costly, when compared to the isolation of cardiomyocytes from adult mouse or rat 10. Neonatal cardiomyocytes are far less sensitive to reintroduction into a calcium-containing medium after dissociation, greatly increasing cell-yield. Another big advantage is that neonatal mouse cardiomyocytes undergo a more rapid dedifferentiation - redifferentiation cycle that typically results in spontaneously beating cells 20 hr after plating, while adult cardiomyocytes typically require pacing to induce contraction. Neonatal cardiomyocytes are also more readily transfectable with liposomal transfection methods, whereas adult cardiomyocytes require viral vectors for successful delivery of transgenic DNA. In contrast to neonatal cardiomyocytes, culture of adult rodent cardiomyocytes 11-13 allows for investigations of myofibrillar degradation and eventual reestablishment of the contractile apparatus. These characteristic morphological changes in adult cardiomyocytes occur over periods of 1-2 weeks. The dedifferentiation - redifferentiation cycle is accompanied by reexpression of the fetal gene program, thereby mimicking pathological changes observed in human cardiomyopathies 14. Another advantage of adult rat cardiomyocytes over the culture of neonatal cardiomyocytes is the ability to culture these cells for long periods of time.

Rat vs. mouse cardiomyocytes

The isolation and culture of rat neonatal cardiomyocytes has some benefits over that of mouse neonatal cardiomyocytes, including higher yields of viable cells and increased transfection rates. However, the wide usage of genetically modified mouse models for cardiac diseases (e.g. the muscle lim protein knockout mouse as model for dilated cardiomyopathy 15) has led to the adaptation of the isolation procedure for cardiomyocytes derived from neonatal mice. Although the protocols used to isolate neonatal rat and mouse cardiomyocytes are nearly identical, greater care must be taken in the selection of an appropriate enzyme mix for the latter. Indeed, neonatal mouse cardiomyocytes are generally more susceptible to overdigestion, resulting in a reduced cell-yield and viability. Moreover, the plating density should be adjusted, because cardiomyocytes derived from neonatal mice are somewhat smaller compared to cells derived from neonatal rat hearts.

With many uses for the investigation of morphological, electrophysiological, biochemical, cell-biological and biomechanical parameters as well as for the process of myofibrillogenesis, cultured neonatal cardiomyocytes have become one of the most versatile systems for the study of cardiac cell functions in vitro. The first step to a successful assay however, depends on an easy and reliable methodology to isolate neonatal mouse cardiomyocytes. Our protocol draws its methodology from many sources and was optimized for reproducibility and robustness. We discuss factors that influence cardiomyocyte-yield and viability, and provide a variety of options for the optimization of isolation and culture conditions.

Access restricted. Please log in or start a trial to view this content.

Protocol

The following procedure describes a two-day protocol 16,17 for the isolation and culture of neonatal mouse cardiomyocytes. All solutions are sterile or sterile filtered. All tools are sterilized by surface sterilization with 75% ethanol. Except for the initial tissue extraction, all steps are performed in a sterile laminar flow cell culture hood. This protocol is intended for the isolation of neonatal mouse hearts from one-two litter(s) - approximately 5-14 pups, but may be adapted for larger litter sizes and rat neonatal cardiomyocytes. Scale media/enzyme usage as appropriate.

For work with neonatal rodents, refer to your local university guidelines and rules set forth by the legislature and/or animal care programs, and adhere to your institutionally approved animal protocol. All methods described in this protocol have been approved by the UC San Diego Institutional Animal Care and Use Committee (IACUC), and adhere to federal and state regulations.

Day 1.

1. Isolation of Cardiac Tissue from Neonatal Mice

  1. Prepare 50 ml of 1x PBS (without Ca2+, Mg2+) supplemented with 20 mM BDM 6-8, and disperse into two sterile bacterial dishes placed on ice.
  2. Prepare 10 ml of isolation medium in 50 ml sterile conical Falcon tube. Keep all solutions on ice. Sterilize scissors (one curved; one straight), and forceps (curved, Dumont No.7).
  3. 1-3 days old neonatal mice are rinsed quickly in 75% ethanol solution for surface sterilization. Pups are decapitated using sterile scissors (straight), and the chest is opened along the sternum to allow access to the chest cavity and the heart (Figure 1A, Supplemental Movie S1).
    Technical comment: Neonatal mice older than 3 days may be used, but result in fewer viable cells 2.
  4. Hearts are extracted from the body with curved scissors and transferred immediately into the bacterial dish containing 1x PBS (without Ca2+, Mg2+) with 20 mM BDM, on ice. All following steps are performed in the sterile cell-culture hood.
  5. Remove lung tissue, larger vessels (and atria, if desired). Wash hearts in the 1x PBS solution (without Ca2+, Mg2+) with 20 mM BDM (on ice) to remove blood. Transfer washed hearts from first dish into the second bacterial dish containing 1x PBS (without Ca2+, Mg2+) with 20 mM BDM (on ice) using forceps or a perforated spoon (Figure 1B).
  6. Transfer cleaned/washed hearts into a drop of isolation medium (approximately 250 μl; Figure 1C) in a third bacterial dish (on ice) and use the curved scissors to mince hearts into small pieces (approximately 0.5-1 mm3, or smaller; Figure 1D, 1E).
  7. Transfer minced hearts into a conical tube containing 10 ml of the isolation medium (on ice), and incubate with gentle agitation at 4 °C over night.

Day 2.

2. Enzymatic Tissue Digestion and Plating of Cells

  1. Weigh in 15 mg of collagenase/dispase mixture (Roche), and dissolve the enzyme mix in 10 ml L15-medium 5 supplemented with 20 mM BDM (digestion medium). Sterile filter the digestion medium in the cell culture hood into a new sterile 50 ml Falcon tube.
  2. Prepare 30 ml L-15 medium supplemented with 20 mM BDM, and plating medium.
  3. Coat cell-culture plates with collagen solution (Sigma C-8919) for a minimum of 1 hr. Remove collagen solution (can be reused) and dry collagen coated cell-culture dishes in sterile laminar flow cell-culture hood.
  4. Remove the conical tube containing the predigested hearts from 4 °C. Tissue fragments should be aggregated (Figure 1G). Let the tissue fragments sink to the bottom of the tube and remove the supernatant (make sure not to loose any tissue fragments; normally, approx. 1 ml of the isolation medium may remain in the tube). Add 5 ml of digestion medium and 5 ml of L-15 supplemented with 20 mM BDM to tissue fragments and oxygenate suspension using oxygen or air for 1 min.
  5. Transfer the sealed conical tube containing the cardiac tissue fragments in digestion medium to 37 °C water bath for about 2 min to adjust temperature of the digestion solution.
  6. Incubate cardiac tissue fragments at 37 °C with gentle agitation for 20-30 min (e.g. shaker at 37 °C, set to no more than 60rpm). Digestion times may greatly depend on enzyme mixture and lot number. Caution: longer incubation periods or higher enzyme concentrations may reduce cell viability.

Technical comment: We recommend usage of a collagenase/dispase mixture from Roche (Cat.No.: 10269638001) that has very little lot-to-lot variability. The classical enzyme for the isolation of mouse cardiomyocytes is trypsin and/or collagenase type II 3,16-20 available from Worthington (Cat No CLS-2). However, performance of collagenase II may differ substantially from lot-to-lot. Worthington typically allows for the testing of several collagenase lots to optimize digestion times and enzyme usage. Alternatively, Worthington sells a cardiomyocyte isolation kit with a pre-tested enzyme mixture included that can be adapted for the isolation of mouse cardiomyocytes 17 (Cat No.: NCIS).

  1. Place sterile cell-strainer (40-100 μm nylon mesh) in fresh sterile 50 ml conical falcon tube. Pre-wet cell strainer with 5 ml L-15 supplemented with 20 mM BDM. Gently triturate tissue fragments using a pre-wetted 10 ml cell-culture pipette for about 10-20 times. The tissue fragments should mostly disperse during this step, releasing the cells into suspension (Figure 1H).
  2. Let larger tissue fragments sediment and transfer supernatant containing suspended cells into fresh conical tube through cell-strainer (Figure 1I).
  3. Re-suspend the undigested tissue fragments in 5 ml digestion medium and incubate for an additional 5-10 min at 37 °C with gentle agitation.
  4. After continuing digestion of remaining tissue fragments, gently triturate tissue for 10-20 times and add to conical tube containing cells from the first digest through cell strainer. Rinse cell-strainer with 5 ml L-15 supplemented with 20 mM BDM to allow passage of all digested cells.
  5. Centrifugate conical tube containing suspended cardiomyocytes for 5 min at 300 rpm (approx. 50-100 x g). Remove the supernatant (containing mostly fibroblasts and endothelial cells) and re-suspend cell pellet in 10 ml plating medium.
  6. Plate cells into 10 cm cell culture dish (Figure 2A) and incubate for 1-3 hr in cell culture incubator. This pre-plating step removes fibroblasts and endothelial cells (Figure 2B), which will adhere to the uncoated cell-culture dish (Figure 2C).
  7. After incubation, wash non-adherent cardiomyocytes from 10 cm culture dish (re-suspend cells by repeatedly pipetting the plating medium over the dish), and transfer resuspended cells to a sterile conical Falcon centrifuge tube (15 ml or 50 ml).
    Optional: Repeat the pre-plating step to remove additional fibroblasts from cell-suspension. If desired, the adherent fibroblast and endothelial cells can be further cultured.
  8. Count cells (e.g. by using Neubauer hemocytometer, trypan blue exclusion staining 21).
  9. Plate cells into collagen coated cell culture dishes with a density of approximately 1.5 x 105 cells per cm2 (Figure 2D; see also comments in Table 1 on plating and coating).
    Place dishes into cell culture incubator and leave undisturbed for 12-18 hr to allow for adherence and spreading of cardiomyocytes.

Day 3 - Culture of neonatal cardiomyocytes

  1. Prepare maintenance medium and prewarm in 37 °C water bath. Refer to Table 1 for the addition of proliferation inhibitors or chronotropic agents, or the procedure for the liposomal transfection of neonatal mouse cardiomyocytes.
  2. One day after plating, cardiomyocytes should have adhered to the cell culture dish and optimally start spontaneously to contract (Figure 2E, 2F; Supplemental Movie S2; refer to Table 2 for common problems during the isolation/culture procedure). Replace plating medium with maintenance medium, and culture for additional 1-5 days. Change medium as necessary.

Access restricted. Please log in or start a trial to view this content.

Results

Using this protocol, we isolated hearts from 8 one day old neonatal mice (Figures 1A, 1B, Supplemental Movie S1). After washing and mincing the hearts with scissors (Figures 1C-1F), tissue fragments were predigested in isolation medium over night at 4 °C with gentle agitation. Following predigestion (Figure 1G), we transferred the tissue fragments into freshly made digestion medium, and incubated the tissue fragments for 20 min at 37 °C with gentle agitation. The...

Access restricted. Please log in or start a trial to view this content.

Discussion

The use of animal models to study cardiac diseases has become standard in cardiovascular research. Closer biochemical characterization of these models (i.e. studying direct responses of cardiac cells to biochemical or biomechanical stimuli) typically requires the isolation of heart tissues or cardiomyocytes. Studies investigating physiological responses of the heart ex vivo (e.g. to acetylcholine 40, or in ischemia-reperfusion scenarios 41) generally utilize langendorff-pe...

Access restricted. Please log in or start a trial to view this content.

Disclosures

None.

Acknowledgements

We are grateful to Prof. emeritus Jean-Claude Perriard and Evelyn Perriard (Swiss Federal Institute of Technology, Switzerland) for the introduction into isolation techniques for neonatal rat and mouse cardiomyocytes. We would like to thank Prof. Ju Chen and Prof. Sylvia Evans (UCSD, USA) for their support. Work in the laboratory of EE was funded by an MRC Career Establishment Grant. SL is supported by a K99/R00 pathway to independence award from the NIH/NHLBI (HL107744). TMM was supported by a postdoctoral fellowship from the American Heart Association (11POST7310066).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
BDM (2,3-Butanedione monoxime) 6-8SigmaB-0753prepare 0.2M stock solution in HBSS (without Ca2+, Mg2+), filter sterilize, can be kept at 4 °C up to 6 months; Caution: Prolonged usage of BDM other than during isolation procedure may result in non-beating cells, decreased cell viability and/or significantly altered gene-expression during cardiomyocyte culture46,47.
Collagenase/DispaseRoche10269638001can be substituted with collagenase type II from Worthington
Collagenase type II3WorthingtonCLS-2substitute for Collagenase/Dispase mix from Roche
1x trypsin solution (0.25%) with EDTAcellgro25-053-CI
1x Penicillin/ Streptomycin solution with EDTA in HBSScellgro30-002-Cl
1x PBS (without Ca2+, Mg2+)e,g, cellgro21-040-CV
HBSS (Hank’s balanced salt solution; without Ca2+, Mg2+) 4cellgro21-022-CV
DMEM high glucosecellgro10-013-CV
M-199cellgro10-060-CV
fetal bovine serumcellgro35-011-CVcell-culture grade
horse serumcellgro35-030-CVcell-culture grade
Leibovitz L-155cellgro10-045-CV
AraC (Cytosine-B-D-arabino-furanoside hydrochloride)SigmaC-6645proliferation inhibitor, prepare 1 mM stock solution in H2O, filter sterilize, store at 4 °C
phenylephrineSigmaP-6126chronotropic agent, prepare 100 mM stock solution in H2O, filter sterilize, store at 4 °C or -20 °C
isoproterenol hydrochlorideSigmaI-6501chronotropic agent, prepare 1 mM stock solution in H2O, filter sterilize, store at 4 °C or -20 °C
0.1% collagen solutionSigmaC-8919extracellular matrix for coating
3 mg/ml collagen type 1 solutionAdvanced BioMatrix5005-Balternative to Sigma collagen solution
cell strainerFisherbrand22363548appropriate filter size:40 μm-100 μm
syringe filter 0.2 μmFisherbrand09-719Cfor sterile filtration of digestion medium
straight scissorsFine Sciences Tools91460-11
curved scissorsFine Science Tools91461-11
Dumont No. 7 forcepsFine Science Tools91197-00
perforated spoonFine Science Tools10370-19optional, for transfer of heart tissue
Trypan blueGibco15250-061live cell staining
Neubauer hemocytometerProsource Scientific3500alternatively use: disposable hemocytometer C-chip or automated cell counting systems
50 ml Falcon tubesFisherbrand14-432-23
15 ml Falcon tubesFisherbrand05-527-90
20 ml syringeBD Medical14-820-19
10 ml serological pipetteFalcon357551
30 mm cell culture dishNunc153066for standard culture of cardiomyocytes
30 mm cell culture dish, glass bottomMatTekP35G-0-10-Cfor live cell imaging with inverted microscope
10 cm cell culture dishNunc172958for preplating
Escort IIISigmaL3037for liposomal transfection, alternatively use lipofectamin 2000
Lipofectamine 2000Life Technologies, Invitrogen52887substitute for Escort III
Buffers and media:
  • Isolation medium (filter sterilize)
    20 mM BDM
    0.0125% trypsin
    in HBSS4 (without Ca2+, Mg2+)
  • Digestion medium (filter sterilize)
    20 mM BDM
    1.5 mg/ml Roche Collagenase/Dispase enzyme mix
    in L15 medium
  • Plating medium
    65% DMEM high glucose
    19% M-199
    10% horse serum
    5% fetal calf serum
    1% penicillin/streptomycin
  • Maintenance medium
    78% DMEM high glucose
    17% M-199
    4% horse serum
    1% penicillin/streptomycin
    optional:
    1 μM AraC
    1 μM isoproterenol or 0.1 mM phenylephrine
The plating and maintenance medium can be stored at 4 °C for up to 6 months.

References

  1. Harary, I., Farley, B. In vitro studies of single isolated beating heart cells. Science. 131, 1674-1675 (1960).
  2. Harary, I., Farley, B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp. Cell Res. 29, 451-465 (1963).
  3. Worthington Biochemical Corp. Worthington Enzyme Manual. , Freehold. N.J. Available from: http://www.worthington-biochem.com/index/manual.html (2012).
  4. Hanks, J. H., Wallace, R. E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 71, 196-200 (1949).
  5. Leibovitz, A. The Growth and Maintenance of Tissue-Cell Cultures in Free Gas Exchange with the Atmosphere. Am. J. Hyg. 78, 173-180 (1963).
  6. Mulieri, L. A., Hasenfuss, G., Ittleman, F., Blanchard, E. M., Alpert, N. R. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ. Res. 65, 1441-1449 (1989).
  7. Thum, T., Borlak, J. Butanedione monoxime increases the viability and yield of adult cardiomyocytes in primary cultures. Cardiovasc Toxicol. 1, 61-72 (2001).
  8. Verrecchia, F., Herve, J. C. Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Am. J. Physiol. 272, 875-885 (1997).
  9. Allen, T. J., Chapman, R. A. The effect of a chemical phosphatase on single calcium channels and the inactivation of whole-cell calcium current from isolated guinea-pig ventricular myocytes. Pflugers Arch. 430, 68-80 (1995).
  10. Mitcheson, J. S., Hancox, J. C., Levi, A. J. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc. Res. 39, 280-300 (1998).
  11. Piper, H. M., Probst, I., Schwartz, P., Hutter, F. J., Spieckermann, P. G. Culturing of calcium stable adult cardiac myocytes. J. Mol. Cell Cardiol. 14, 397-412 (1982).
  12. Claycomb, W. C., Palazzo, M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev. Biol. 80, 466-482 (1980).
  13. Eppenberger, M. E., et al. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev. Biol. 130, 1-15 (1988).
  14. Eppenberger, H. M., Hertig, C., Eppenberger-Eberhardt, M. Adult rat cardiomyocytes in culture A model system to study the plasticity of the differentiated cardiac phenotype at the molecular and cellular levels. Trends Cardiovasc Med. 4, 187-193 (1994).
  15. Arber, S., et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 88, 393-403 (1997).
  16. Toraason, M., Luken, M. E., Breitenstein, M., Krueger, J. A., Biagini, R. E. Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart. Toxicology. 56, 107-117 (1989).
  17. Worthington Biochemical Corp. Worthington Tissue Dissection Guide. , Freehold. N.J. Available from: http://www.worthington-biochem.com/tissuedissociation (2012).
  18. Bashor, M. M. Dispersion and disruption of tissues. Methods Enzymol. 58, 119-131 (1979).
  19. Speicher, D. W., McCarl, R. L. Pancreatic enzyme requirements for the dissociation of rat hearts for culture. In Vitro. 10, 30-41 (1974).
  20. Gross, W. O., Schopf-Ebner, E., Bucher, O. M. Technique for the preparation of homogeneous cultures of isolated heart muscle cells. Exp Cell Res. 53, 1-10 (1968).
  21. Freshney, R. I. Culture of animal cells : a manual of basic technique and specialized applications. , 6th, Wiley-Blackwell. (2010).
  22. Lange, S., Perera, S., Teh, P., Chen, J. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol Biol Cell. , (2012).
  23. Sen, A., Dunnmon, P., Henderson, S. A., Gerard, R. D., Chien, K. R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263, 19132-19136 (1988).
  24. Evans, H. J., Goodwin, R. L. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development. Mol. Cell Biochem. 303, 189-199 (2007).
  25. Bakunts, K., Gillum, N., Karabekian, Z., Sarvazyan, N. Formation of cardiac fibers in Matrigel matrix. Biotechniques. 44, 341-348 (2008).
  26. Fink, C., et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14, 669-679 (2000).
  27. Nawroth, J. C., et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792-797 (2012).
  28. Das, M., et al. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials. 25, 5643-5647 (2004).
  29. DeQuach, J. A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 5, e13039(2010).
  30. VanWinkle, W. B., Snuggs, M. B., Buja, L. M. Cardiogel: a biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell Dev. Biol. Anim. 32, 478-485 (1996).
  31. Karliner, J. S., Simpson, P. C., Taylor, J. E., Honbo, N., Woloszyn, W. Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium: comparison with serum-supplemented medium. Biochem Biophys Res Commun. 128, 376-382 (1985).
  32. Steinhelper, M. E., et al. Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am. J. Physiol. 259, H1826-H1834 (1990).
  33. Ahuja, P., Perriard, E., Perriard, J. C., Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 117, 3295-3306 (2004).
  34. Iwaki, K., Sukhatme, V. P., Shubeita, H. E., Chien, K. R. Alpha- beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J. Biol. Chem. 265, 13809-13817 (1990).
  35. Kirshenbaum, L. A., MacLellan, W. R., Mazur, W., French, B. A., Schneider, M. D. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J. Clin. Invest. 92, 381-387 (1993).
  36. Maeda, Y., et al. Adeno-associated virus-mediated transfer of endothelial nitric oxide synthase gene inhibits protein synthesis of rat ventricular cardiomyocytes. Cardiovasc Drugs Ther. 15, 19-24 (2001).
  37. Zhao, J., et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res. Cardiol. 97, 348-358 (2002).
  38. Djurovic, S., Iversen, N., Jeansson, S., Hoover, F., Christensen, G. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol. Biotechnol. 28, 21-32 (2004).
  39. van Bever, L., et al. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 287, 850-859 (2004).
  40. Sakai, K., Akima, M., Tsuyama, K. Evaluation of the isolated perfused heart of mice, with special reference to vasoconstriction caused by intracoronary acetylcholine. J. Pharmacol Methods. 10, 263-270 (1983).
  41. Reichelt, M. E., Willems, L., Hack, B. A., Peart, J. N., Headrick, J. P. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol. 94, 54-70 (2009).
  42. Tian, R. Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy. J. Vis. Exp. (42), e2069(2010).
  43. Liao, R., Podesser, B. K., Lim, C. C. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol. 303, H156-H167 (2012).
  44. Zakharova, L., Nural-Guvener, H., Gaballa, M. A. Cardiac explant-derived cells are regulated by Notch-modulated mesenchymal transition. PLoS One. 7, e37800(2012).
  45. Rudy, D. E., Yatskievych, T. A., Antin, P. B., Gregorio, C. C. Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev. Dyn. 221, 61-71 (2001).
  46. Thum, T., Borlak, J. Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor butanedione monoxime. Transplantation. 71, 543-552 (2001).
  47. Kabaeva, Z., Zhao, M., Michele, D. E. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am. J. Physiol. Heart. Circ. Physiol. 294, H1667-H1674 (2008).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Neonatal Mouse CardiomyocytesMyofibrillogenesisMyofibrillar FunctionsCell IsolationCell CultureEnzymatic DissociationCell ViabilityBiochemical AssaysElectrophysiologyBiomechanicsProtocol OptimizationReproducibility

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved