JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Identification of Sleeping Beauty Transposon Insertions in Solid Tumors using Linker-mediated PCR

Published: February 1st, 2013

DOI:

10.3791/50156

1Department of Obstetrics, Gynecology & Women's Health, Masonic Cancer Center, University of Minnesota, Minneapolis, 2Department of Genetics, Cell Biology & Development, Center for Genome Engineering, University of Minnesota, Minneapolis

A method of identifying unknown drivers of carcinogenesis using an unbiased approach is described. The method uses the Sleeping Beauty transposon as a random mutagen directed to specific tissues. Genomic mapping of transposon insertions that drive tumor formation identifies novel oncogenes and tumor suppressor genes

Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer1. Unfortunately these drivers are hidden within a much larger number of passenger anomalies in the genome that do not directly contribute to tumor formation. Another aspect of the cancer genome is that there is considerable genetic heterogeneity within similar tumor types. Each tumor can harbor different mutations that provide a selective advantage for tumor formation2. Performing an unbiased forward genetic screen in mice provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The Sleeping Beauty (SB) transposon system is one such method3. The SB system utilizes mobile vectors (transposons) that can be inserted throughout the genome by the transposase enzyme. Mutations are limited to a specific cell type through the use of a conditional transposase allele that is activated by Cre Recombinase. Many mouse lines exist that express Cre Recombinase in specific tissues. By crossing one of these lines to the conditional transposase allele (e.g. Lox-stop-Lox-SB11), the SB system is activated only in cells that express Cre Recombinase. The Cre Recombinase will excise a stop cassette that blocks expression of the transposase allele, thereby activating transposon mutagenesis within the designated cell type. An SB screen is initiated by breeding three strains of transgenic mice so that the experimental mice carry a conditional transposase allele, a concatamer of transposons, and a tissue-specific Cre Recombinase allele. These mice are allowed to age until tumors form and they become moribund. The mice are then necropsied and genomic DNA is isolated from the tumors. Next, the genomic DNA is subjected to linker-mediated-PCR (LM-PCR) that results in amplification of genomic loci containing an SB transposon. LM-PCR performed on a single tumor will result in hundreds of distinct amplicons representing the hundreds of genomic loci containing transposon insertions in a single tumor4. The transposon insertions in all tumors are analyzed and common insertion sites (CISs) are identified using an appropriate statistical method5. Genes within the CIS are highly likely to be oncogenes or tumor suppressor genes, and are considered candidate cancer genes. The advantages of using the SB system to identify candidate cancer genes are: 1) the transposon can easily be located in the genome because its sequence is known, 2) transposition can be directed to almost any cell type and 3) the transposon is capable of introducing both gain- and loss-of-function mutations6. The following protocol describes how to devise and execute a forward genetic screen using the SB transposon system to identify candidate cancer genes (Figure 1).

1. Breeding and Aging of Transgenic Animals

  1. Select the strains of transgenic mice appropriate for your experiment. A typical experiment will use three transgenic lines; a conditional transposase mouse, a mouse harboring a concatamer of transposons, and a mouse expressing Cre Recombinase in the cells believed to be the cells of origin for the desired cancer. If the cancer being modeled has a known mutation in a large percentage of the patients it may be desirable to include this mutation at the start........

Log in or to access full content. Learn more about your institution’s access to JoVE content here

After the breeding scheme has been established, breeders should produce a litter every 19-21 days. Litter size will vary between 5 and 12 pups, depending on the age of the breeders and the genetic background. In addition, make sure that the genotype of the litter follows Mendelian genetics as a way to confirm that the breeding scheme is both correct and successful.

For the experiment to be successful, tumor incidence in the experimental animals should be significantly greater than tumor incid.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A forward genetic screen using the Sleeping Beauty transposon system provides a method for identifying mutations that cause cancer. By selecting the appropriate promoter to control Cre Recombinase in addition to any predisposing mutations, the SB screen will identify known and novel candidate cancer genes.

The success of an SB screen is largely dependent on the mice selected for creating the screen. For the transposon, we recommend using two different mouse strains carrying .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Branden Moriarity, David Largaespada, and Vincent Keng at the University of Minnesota, and Adam Dupuy at the University of Iowa for their assistance in developing the protocol described above.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of the reagent Company Catalogue number Comments (optional)
Sure-Seal Induction Chamber Brain Tree Scientific EZ-177
Cryovial Bioexpress C-3355-2
10% Buffered Formalin Sigma Aldrich HT501128-4L
Protein Precipitation solution Qiagen 158910
Cell lysis buffer Qiagen 158906
Proteinase K Qiagen 158920
RNase A Qiagen 158924
TE Buffer Promega V6232
BfaI New England Biolabs R0568S
NlaIII New England Biolabs R0125S
MinElute 96 well plates Qiagen 28051
QIAvac 96 Vacuum manifold Qiagen 19504
Multi-MicroPlate Genie, 120V Scientific Industries, Inc. SI-4000
T4 DNA ligase with 5x ligation Buffer Invitrogen 15224-041
BamHI New England Biolabs R0136S
25mM dNTPs Bioexpress C-5014-200
Platinum Taq Invitrogen 10966-034
FastStart Taq DNA Polymerase Roche 12032929001
Agarose Promega V3121
TAE Buffer Promega V4271
TE Buffer Promega V6232
Ethidium bromide Promega H5041

  1. Fearon, E. R., Vogelstein, B., et al. A genetic model for colorectal tumorigenesis. Cell. 61, 759-767 (1990).
  2. Wood, L. D., et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science. 318, 1108-1113 (2007).
  3. Ivics, Z., Hackett, P. B., Plasterk, R. H., Izsvák, Z. Molecular Reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells. Cell. 91, 501-510 (1997).
  4. Starr, T. K., Largaespada, D. A. Cancer gene discovery using the Sleeping Beauty transposon. Cell Cycle. 4, 1744-1748 (2005).
  5. Mueller, P. R., Wold, B. In Vivo Footprinting of a Muscle Specific Enhancer by Ligation Mediated PCR. Science. 246, 780-786 (1989).
  6. Bergemann, T. L., et al. New methods for finding common insertion sites and co-occurring common insertion sites in transposon- and virus-based genetic screens. Nucleic acids research. 40, 3822-3833 (2012).
  7. Copeland, N. G., Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nature Reviews Cancer. 10, 696-706 (2010).
  8. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J., Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature. 436, 272-276 (2005).
  9. Starr, T. K., et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science. 323, 1747-1750 (2009).
  10. Keng, V. W., et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature. 27, 264-274 (2009).
  11. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G., Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 436, 221-226 (2005).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved