A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Microscale thermophoresis (MST) can be widely used for determination of binding affinity without purification of the target protein from cell lysates. The protocol involves overexpression of the GFP-fused protein, cell lysis in non-denaturing conditions, and detection of MST signal in the presence of varying concentrations of the ligand.

Abstract

Quantitative characterization of protein interactions is essential in practically any field of life sciences, particularly drug discovery. Most of currently available methods of KD determination require access to purified protein of interest, generation of which can be time-consuming and expensive. We have developed a protocol that allows for determination of binding affinity by microscale thermophoresis (MST) without purification of the target protein from cell lysates. The method involves overexpression of the GFP-fused protein and cell lysis in non-denaturing conditions. Application of the method to STAT3-GFP transiently expressed in HEK293 cells allowed to determine for the first time the affinity of the well-studied transcription factor to oligonucleotides with different sequences. The protocol is straightforward and can have a variety of application for studying interactions of proteins with small molecules, peptides, DNA, RNA, and proteins.

Introduction

Quantitative characterization of affinity of intermolecular interactions is important in many areas of biomedical research. Binding dissociation constant (KD) is essential not only in drug discovery but is also an important parameter in characterization of any binary interaction in any biological system. Biochemical methods used for detection of protein-protein interactions, such as immunoprecipitation and yeast two-hybrid screens, do not inform us on how tight are those interactions, while affinity defines whether this particular complex exists under given conditions in vivo. In drug discovery process, binding assay development is one of the neces....

Protocol

1. Preparation of Cell Lysate

This protocol is intended for adherent cells expressing any GFP-fused protein. Needed cell number can vary from as low as 106 to as many as 20 x 106 cells, depending on the level of protein expression. For example, lysate of HEK cells overexpressing GFP-STAT3 was prepared by treating cells grown in 10 T75 flasks to near 70% confluency with 1 ml lysis buffer. However, this lysate had to be diluted 150-fold to provide optimal level of fluorescence for MST experiment. Cell lysis protocol depends strongly on the properties and intracellular localization of the protein under investigation. If usi....

Results

Measuring the affinity of non-phosphorylated STAT3 protein binding to oligonucleotides.

HEK293 cells expressing STAT3-GFP were used as a source of fluorescently labeled STAT3 for DNA binding assay. Cell lysates were prepared using RIPA buffer (20x106cells/ml). For binding studies, the lysates were diluted 150x with MST DNA-binding buffer to provide the optimal level of the fluorescent protein in the binding reaction (about 20 nM). Non-transfected HEK293 cells have been.......

Discussion

Protein expression and purification is a laborious and expensive step, which is, however, necessary for determination of interactions' KD by most currently used method. Application of MST allows avoiding protein purification thus significantly simplifying and accelerating quantitative characterization of interactions. It presents particularly significant advantages in the case of difficult-to-express and purify proteins, such as membrane proteins and transcription factors.

The major.......

Disclosures

The authors declare that they have no competing financial interests. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Acknowledgements

This work was partially supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research; Collaborative Research Agreement between NCI and Calidris Therapeutics; American Cancer Society grant IRG 97-152-17 to O.T; and federal funds from the National Cancer Institute, NIH, under contract HHSN26120080001E.

....

Materials

NameCompanyCatalog NumberComments
Name of the Reagent/materialCompanyCatalogue NumberComments
RIPA bufferMillipore20-188Other manufacturer's buffers work as well
Protease inhibitors cocktailSigma-AldrichP2714
Monolith NT.115NanoTemper Technologies GmbHG008
Monolith NT.115 Capillary TrayNanoTemper Technologies GmbHT001
Monolith NT.115 Standard Treated CapillariesNanoTemper Technologies GmbHK002
NT Control softwareNanoTemper Technologies GmbH2.0.2.29
NT Analysis softwareNanoTemper Technologies GmbH1.4.27
Table-top refrigerated centrifugeEppendorf 5417ROther microtube refrigerated centrifuges
Protein LoBind Tube 0.5 mlEppendorf 22431064

References

  1. Lea, W. A., Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert. Opin. Drug Discov. 6, 17-32 (2011).
  2. Willander, M., Al-Hilli, S. Analysis of biomolecules using surface plasmons. M....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Protein PurificationMicroscale ThermophoresisBinding AffinityKD DeterminationGFP fused ProteinSTAT3Cell LysateNon denaturing ConditionsDrug DiscoveryProtein Interactions

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved