A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol allows for a direct comparison between planktonic and biofilm resistance for a bacterial strain that can form a biofilm in vitro using a 96-well microtiter plate. Planktonic or biofilm bacteria are exposed to serial dilutions of the antimicrobial agent of choice. Viability is assayed by growth on agar plates.
This protocol allows for a direct comparison between planktonic and biofilm resistance for a bacterial strain that can form a biofilm in vitro. Bacteria are inoculated into the wells of a 96-well microtiter plate. In the case of the planktonic assay, serial dilutions of the antimicrobial agent of choice are added to the bacterial suspensions. In the biofilm assay, once inoculated, the bacteria are left to form a biofilm over a set period of time. Unattached cells are removed from the wells, the media is replenished and serial dilutions of the antimicrobial agent of choice are added. After exposure to the antimicrobial agent, the planktonic cells are assayed for growth. For the biofilm assay, the media is refreshed with fresh media lacking the antimicrobial agent and the biofilm cells are left to recover. Biofilm cell viability is assayed after the recovery period. The MBC-P for the antimicrobial agent is defined as the lowest concentration of drug that kills the cells in the planktonic culture. In contrast, the MBC-B for a strain is determined by exposing preformed biofilms to increasing concentrations of antimicrobial agent for 24 hr. The MBC-B is defined as the lowest concentration of antimicrobial agent that kills the cells in the biofilm.
Antibiotic resistance assays were initially developed to assay resistance of planktonic (free-swimming) cultures of bacteria. Since many bacterial infections involve biofilms (surface-attached cells), we were interested in developing a method to assay biofilm-specific antibiotic resistance. However, most antibiotic resistance assays are poorly suited for measuring the resistance of biofilms. For example, determining the minimal inhibitory concentration (MIC) is the gold standard for determining antibiotic resistance of planktonic bacterial cultures 1. This assay entails mixing a diluted planktonic culture with a dilution series of antibiotic. The concentration of antibiotic that inhibits the visible growth of the planktonic cells is the MIC. Since this assay relies on inhibition of growth, by definition, it cannot work with biofilm cultures, which requires examining the antibiotic sensitivity of cells in a pregrown biofilm. Instead of measuring growth inhibition, the MBC-B assay described here determines the concentration of antibiotic that kills cells already existing in a biofilm. Thus, this assay aims to mimic antibiotic treatments of established biofilm infections, and provide a more relevant view of the bacterial antibiotic resistance in vivo.
Since biofilms are generally more antibiotic resistant than planktonic cultures 2-4 , it was necessary to devise a method that directly relates the antibiotic resistance of a biofilm to that of a planktonic culture. Thus another goal of this method is to be able to directly compare the level of antibiotic resistance between planktonic and biofilm cells. The MBC-P and MBC-B assays described here make this possible because cells are cultured under similar conditions. We have utilized this method to study several genes that are important for biofilm-specific antibiotic resistance 5-8 .
1. MBC-B
2. MBC-P
MBC-P and MBC-B assays were carried out, comparing the sensitivity of PA14 wild type with PA14 ∆ndvB. Tobramycin was used as the antibiotic. Results corresponding to step 1.4.4 (Figure 1) and step 2.3.4 (Figure 2) are presented. PA14 and ∆ndvB were inoculated into the MBC-P and MBC-B assays in triplicate. After completing steps 1.0-1.4 of the MBC-B protocol and steps 2.0-2.3 of the MBC-P protocol, the viable cells were plated onto an LB agar plate. Concentra...
Antibiotic resistance in planktonic cells is defined as an increase in the minimum inhibitory concentration (MIC) of an antibiotic due to a permanent change in the cells (e.g. a mutation). The mechanisms of biofilm-specific resistance or tolerance that have been identified to date are the result of the expression of wild type genes within biofilms. Thus, the classical definition of resistance does not apply to biofilms. However, another set of definitions has been presented: resistance mechanisms prevent the ant...
The author declares that she has no competing financial interests.
The author would like to thank Li Zhang, Xian-Zhi Li, Aaron Hinz, and Clayton Hall for editorial help with this manuscript. This assay was initially developed in the lab of George O’Toole, Geisel School of Medicine at Dartmouth. Research in Dr. Mah’s lab is supported by grants from the Natural Sciences and Engineering Research Council of Canada and Cystic Fibrosis Canada.
Name | Company | Catalog Number | Comments |
1x M63 | Prepare as a 5x M63 stock by dissolving 15g KH2PO4, 35g K2HPO4 and 10g (NH4)2SO4 in 1 L of water. This stock does not need to be autoclaved and can be stored at room temperature. Dilute 5x stock 1:5, autoclave, cool, then add the desired components. | ||
KH2PO4 | Fisher | P285-500 | |
K2HPO4 | Fisher | P288-500 | |
(NH4)2SO4 | Sigma | A5132 | |
Magnesium sulfate | Fisher | M63-500 | Add to 1 mM final concentration. Prepare as a 1 M stock in water and autoclave. |
Tobramycin | Sigma | Prepare 50 mg/m stock. Aliquot and store at -20°C. | |
Arginine | Sigma | A5131 | Add to 0.4% final concentration. Prepare as a 20% stock in water and filter sterilize. This alternative carbon/energy source can replace glucose and casamino acids |
96-well microtiter plates | Corning | 3595 | Sterile, flat-bottom, low evaporation |
Tranferpette (multichannel pipette) | BrandTech | 2703610 | 8-channel, 20-200 μl |
Multiprong device | Dan-Kar | MC48 | 48 prongs fit into ½ of a 96-well microtiter plate |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved