Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe here the use of a pH-sensitive green fluorescent protein variant, pHluorin, to study the spatio-temporal dynamics of axon guidance receptors trafficking at the cell surface. The pHluorin-tagged receptor is expressed both in cell culture and in vivo, using electroporation of the chick embryo.

Abstract

During development, axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.

Introduction

During their navigation, axons integrate multiple environmental cues that guide them towards their target. These cues activate guidance receptors at the surface of axon terminals, the growth cones, which in turn initiate an appropriate signaling pathway. Thus, the temporal and spatial regulation of the cell surface distribution of the receptors is critical to set the sensitivity of the growth cone1. In this context, midline crossing by commissural axons is an excellent model to investigate the regulation of receptor cell surface levels. In the developing spinal cord, commissural axons are initially attracted towards the ventral floor plate where they cross ....

Protocol

1. Cloning Strategy to Tag PlexinA1 Receptor with pHluorin

  1. Choose an appropriate expression vector as a backbone (e.g. the mouse receptor plexinA1 expressing vector, a kind gift of Dr. Andreas Puschel11).
    Note: This plexinA1 vector was engineered to achieve efficient HA- or VSV-tagged receptor insertion in the plasma membrane.
  2. Amplify by PCR the ecliptic pHluorin coding sequence using the adequate plasmid as a template (e.g. pHluorin-tagged GABA A recept.......

Representative Results

figure-representative results-63
Figure 1.  A. Scheme of the pHluorin-plexinA1 fluorescence properties in a cellular context. PHluorin is nonfluorescent in intracellular compartments where the pH is acidic (<6) such as in trafficking vesicules or in endosomes and is fluorescent when exposed to the extracellular medium where th.......

Discussion

This protocol provides a step-by-step procedure to follow the dynamics of an axon guidance receptor both in cell culture and in the developmental context of the chick embryo spinal cord.

To design a de novo pHluorin tagged protein, two points need to be considered regarding the cloning strategy. First, the pHluorin tag should be exposed to the lumen of the acidic endosomes, and consequently, to the extracellular compartment in order to visualize the plasma membrane receptor pool. Thus.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Homaira Nawabi, Frederic Moret and Isabelle Sanyas for their help. This work is supported by CNRS, Association Francaise contre les Myopathies (AFM), ANR YADDLE, Labex DevWeCan, Labex Cortex, ERC YODA to V.C.; C.D-B and A.J are supported by a La Ligue contre le cancer and Labex DevWeCan fellowships, respectively.

....

Materials

NameCompanyCatalog NumberComments
COS7 cellsATCCCRL-1651
DMEM GlutaMAXGIBCO61965-026
Sodium pyruvateGIBCO11360-039
Amphotericin BSigmaA2942
Fetal bovine serumGIBCO10270-106
Penicillin/StreptomycinGIBCO15140-122
Exgen500 reagentEuromedex FermentasET0250
PBS -Ca2+ -Mg2+GIBCO14190-094
Fast green dyeSigmaF7252
32% Paraformaldehyde aqueous solutionElectron Microscopy15714-SDilute extemporaneously in PBS to achieve a 4% solution
Gelatin from cold water fish skinSigmaG7041
SucroseSigmaS0389
CryomountHistolab00890
Hoechst 34580InvitrogenH21486
Mowiol 4-88Fluka81381
Consumables
Bottom-glass 35 mm dishMatTekP35G-1.5-14-C
5 ml SyringeTerumoSS-05S
Needles 0.9 mm x 25 mmTerumoNN-2025R
CapillariesCMLPP230POcapillaries are stretched manually in the flame
Superfrost Plus SlidesThermo Scientific4951PLUS
Material
Curved scissorsFST129-10
MicroscalpelFST10316-14
ForcepsFSTDumont #5 REF#11254
Equipment/software
Time lapse microscopeZeissObserver 1
Temp module SPECON for Zeiss
CO2 module SPECON for Zeiss
Metamorph softwareMetamorph
Eggs incubatorSanyoMIR154
Electroporator apparatusNepa Gene CO., LTDCUY21
ElectrodesNepa Gene CO., LTDCUY611P7-44 mm platinum electrodes
Fluorescence stereomicroscopeLEICAMZ10F
CryostatMICROMHM550
Confocal microscopeOlympusFV1000, X81
Fluoview softwareOlympus
CLC Main Workbench softwareCLC Bio

References

  1. Winckler, B., Mellman, I. Trafficking guidance receptors. Cold Spring Harb. Perspect. Biol. 2, (2010).
  2. Jacob, T. C., et al. . J. Neurosci. 25, 10469-10478 (2005).
  3. Nawabi, H., Castellani, V.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

PHluorinAxon Guidance ReceptorsCell CultureChick EmbryoSpatio temporal DynamicsCell Surface DynamicsGrowth ConesSignaling MechanismsPH dependent FluorescenceGFP VariantPlasma MembraneIn VitroIn VivoSpinal Cord

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved