A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a protocol for the destabilization of the medial meniscus (DMM) model in mice, an effective tool for osteoarthritis (OA) research. In addition, we have demonstrated that deficiency of progranulincan exaggerate OA development and progression by using this model, indicating that progranulin plays a protective role in the pathogenesis of OA.
Destabilization of medial meniscus (DMM) model is an important tool for studying the pathophysiological roles of numerous arthritis associated molecules in the pathogenesis of osteoarthritis (OA) in vivo. However, the detailed, especially the visualized protocol for establishing this complicated model in mice, is not available. Herein we took advantage of wildtype and progranulin (PGRN)-/- mice as examples to introduce a protocol for inducing DMM model in mice, and compared the onset of OA following establishment of this surgically induced model. The operations performed on mice were either sham operation, which just opened joint capsule, or DMM operation, which cut the menisco-tibial ligament and caused destabilization of medial meniscus. Osteoarthritis severity was evaluated using histological assay (e.g. Safranin O staining), expressions of OA-associated genes, degradation of cartilage extracellular matrix molecules, and osteophyte formation. DMM operation successfully induced OA initiation and progression in both wildtype and PGRN-/- mice, and loss of PGNR growth factor led to a more severe OA phenotype in this surgically induced model.
Osteoarthritis (OA), also known as degenerative arthritis, affects 15% of the world's population and over 46 million people within the United States, and is characterized by synovitis, cartilage degeneration, and osteophyte formation1. It can be a result of a complex interplay of genetic, metabolic, biomechanical and biochemical factors. The underlying mechanisms of OA continue to evade the scientific community. There are presently numerous animal models which can mimic the pathogenesis of OA2,3. It is important to establish animal models in mice because of both the availability of various genetically modified mice and the cost effectiveness of experimentation. Among the different kinds of experimental OA models, the surgically induced destabilization of medial meniscus (DMM) model is a well-accepted OA model because of its good reproducibility and a relatively slower progression during OA development. Both of these attributes have been key for the evaluation of OA progression in different treatments or transgenes3-8. However, the consistency of surgical OA model is affected by various factors during the surgery and as a result, the application of surgical mouse model is limited.
Progranulin (PGRN) is a multi-functional growth factor expressed in various cells. It is known that PGRN plays a critical role in various physiological and disease processes such as wound healing 9, tumorigenesis10, and inflammation11-15. Studies also shown that insufficiency of PGRN can cause degenerative diseases of nervous system in both humans and mice16-18. It is known that PGRN is expressed in human articular cartilage, and its level is significantly elevated in cartilage of patients with OA and rheumatoid arthritis19. In addition, PGRN also plays a crucial role in chondrocyte proliferation 20, differentiation and endochondral ossification of growth plate during development 21,22. Recently, we reported that PGRN antagonized TNF-α through binding to TNF receptors and exhibited an anti-inflammatory function in inflammatory arthritis models13,14,23,24. However, the role of PGRN in OA, especially in vivo, remains to be an enigma. Herein, we present the procedure to induce a surgical DMM model, and investigate the role of PGRN in OA development through establishing DMM model in WT and PGRN-/- mice.
All of the surgical procedures relating to the animals should be approved by local Institution's Animal Care and Ethics Committee, with an effort made to minimize pain and discomfort caused by the surgery.
1. Preparation
2. Surgical Process
3. Post-operative Care
4. Histological Scoring of Surgical DMM Model
DMM model was successfully established in mice, and deficiency of PGRN exaggerated surgically-induced OA development.
Sham and DMM operations (Figure 1) were performed in WT and PGRN-/- mice. 8 weeks after operation, the mice were sacrificed, and Safranin O staining was performed on the sections from knee joints, followed by statistical analysis of arthritis score based on histology. As shown in Figure 2A, there was no obvious degeneration of ...
It is reported that the strain of mice is very important for DMM model induction, as different strains of mice have varying severity of OA after DMM, with highest level in the 129/SvEv strain, followed by C57BL6, 129/SvInJ and then FVB/n26. A large part of transgenes are established in C57BL6 mice, such as PGRN-/- mice we used in the present study, which are relatively susceptible to DMM. However, if the transgene is based on insensitive strain such as FVB/n mice, it is necessary to backcross these mice with s...
We herein declare that we have no conflict of interest.
This work was supported partly by NIH research grants R01AR062207, R01AR061484, R56AI100901, K01AR053210, and a Disease Targeted Research Grant from Rheumatology Research Foundation (to C. J. Liu).
Name | Company | Catalog Number | Comments |
No. 10 Surgical blades | Feather | 25-2976#10 | |
6-0 suture | Applied Dental | WG-N53133 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved