A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Multiple light damage protocols have been described to damage photoreceptors and consequently induce a retinal regeneration response in adult zebrafish. This protocol describes an improved method that can be used in pigmented animals and that damages the vast majority of rod and cone photoreceptors across the entire retina.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
All procedures described in this protocol were approved by the animal use committee at Wayne State University School of Medicine.
1. Dark Adaptation
2. UV Light Exposure
3. Halogen Lamp Light Exposure
4. Tissue Collection
The heretofore described light treatment protocol was compared to each individual method of LIRD. In dark-treated adult albino animals (Figures 3-5), the individual light treatments resulted in significant loss of rod (Figure 3) and cone (Figure 4) photoreceptors. However, both individual treatments primarily damaged photoreceptors in the dorsal half of the retina, leaving the ventral retina relatively protected from the light treatments (...
Here we show that combining a short UV exposure with a continual bright light exposure results in widespread photoreceptor loss and a robust regeneration response. Compared with the individual LIRD methods, this combined method is also the most effective protocol to damage both rods and cones in both halves of the retina. Importantly, this treatment is effective in pigmented animals as well as albino animals.
Although we provide evidence that the combined protocol results in more wide...
The authors have nothing to disclose.
The authors would like to thank Xixia Luo for excellent fish husbandry and technical support. This work was funded by the National Institutes of Health grants R21EY019401 (RT) and P30EY04068 (RT), and start-up funds to RT, including an unrestricted grant from Research to Prevent Blindness to the Wayne State University, Department of Ophthalmology. JT was supported by a Thomas C. Rumble Fellowship provided by the Wayne State University Graduate School.
Name | Company | Catalog Number | Comments |
UV light source | Leica | EL600 | |
Glass Petri dish (150 x 20 mm) | Sigma-Aldrich/Pyrex | CLS3160152BO | |
250 ml glass beaker | Sigma-Aldrich/Pyrex | CLS1000250 | |
4 L glass beaker | Sigma-Aldrich/Pyrex | CLS10004L | |
Aluminum foil | Fisher | 01-213-105 | |
250 W halogen lamps | Workforce | 265-669 | |
1.8 L clear acrylic tanks | Aquaneering | ZT180T | |
1.8 L clear acrylic tank lids | Aquaneering | ZT180LCL | |
Fan | Honeywell | HT-900 | |
Aerator | Tetra | 77853-900 | |
Thermometer | Cole-Parmer | YO-08008-58 | |
Bent forceps (5/45) | World Precision Instruments | 504155 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved