A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol details an assay designed to measure human neutrophil chemotaxis from one droplet of whole blood with robust reproducibility. This approach circumvents the need for neutrophil separation and requires only a few minutes of assay preparation time. The microfluidic chip enables the repeated measure of neutrophil chemotaxis over time in infants or small mammals, where sample volume is limited.
Neutrophils play an essential role in protection against infections and their numbers in the blood are frequently measured in the clinic. Higher neutrophil counts in the blood are usually an indicator of ongoing infections, while low neutrophil counts are a warning sign for higher risks for infections. To accomplish their functions, neutrophils also have to be able to move effectively from the blood where they spend most of their life, into tissues, where infections occur. Consequently, any defects in the ability of neutrophils to migrate can increase the risks for infections, even when neutrophils are present in appropriate numbers in the blood. However, measuring neutrophil migration ability in the clinic is a challenging task, which is time consuming, requires large volume of blood, and expert knowledge. To address these limitations, we designed a robust microfluidic assays for neutrophil migration, which requires a single droplet of unprocessed blood, circumvents the need for neutrophil separation, and is easy to quantify on a simple microscope. In this assay, neutrophils migrate directly from the blood droplet, through small channels, towards the source of chemoattractant. To prevent the granular flow of red blood cells through the same channels, we implemented mechanical filters with right angle turns that selectively block the advance of red blood cells. We validated the assay by comparing neutrophil migration from blood droplets collected from finger prick and venous blood. We also compared these whole blood (WB) sources with neutrophil migration from samples of purified neutrophils and found consistent speed and directionality between the three sources. This microfluidic platform will enable the study of human neutrophil migration in the clinic and the research setting to help advance our understanding of neutrophil functions in health and disease.
Neutrophil trafficking plays a critical role in determining the progress and resolution of many inflammatory conditions, including atherosclerosis1, bacterial infection or sepsis2, and burn injury3. For their major contribution to health and disease conditions, neutrophil count is part of the standard blood analysis often considered in clinical and research laboratories. However, despite being one of the most ubiquitous tests, the value of neutrophil count in the diagnosis of infection and sepsis has been frequently questioned4. For example, one study of neutrophils in burn patients revealed that neutrophil count and neutrophil migration function do not correlate; signifying that neutrophil count alone is not an accurate indicator of immune status3. Although more difficult to measure, neutrophil functional competence has been proposed as more valuable in a broad range of conditions.
Importantly, many of the neutrophil defects are transient and are not triggered by permanent genetic defects, a distinction that has been largely overlooked in the clinic until recently. In the context of burn injuries, neutrophil migration could be monitored during the course of a patient's treatment as an indicator of inflammatory status or infection3. Traditional migration assays currently used in the laboratory (Boyden chamber, Dunn chamber, micropipette assay) cannot be translated into a clinical setting because they require large volumes of blood and cumbersome time-consuming neutrophil isolation techniques (Table 1). These assays also cannot be used to monitor transient changes in neutrophil chemotaxis in small laboratory animals, such as mice, because the volume of blood needed for neutrophil isolation allows for only one sample and often even requires pooling of blood from multiple animals for a single assay. For instance, a study involving multiple conditions and treatments over multiple time-points could potentially require thousands of mice using current chemotaxis assays. This restricts the basic biological research that can be done to understand the complex dynamics of immune function in the context of injury, infection or burn often studied in the murine models5.
To address the need for a neutrophil functional assay that is rapid, robust, while requiring minimal blood volume, we have developed a microfluidic device that measures neutrophil chemotaxis directly from a small droplet of whole blood. It is known that many factors in whole blood, including serum6 and platelets7, affect neutrophil function. It is therefore beneficial that the whole blood microfluidic assay minimizes sample processing to maintain the in vivo microenvironment of the neutrophil when measuring variations in chemotaxis with an in vitro assay8. This approach reduces the time from blood collection to neutrophil migration assays from hours using traditional techniques, to just minutes (Table 1). The whole blood microfluidic platform produces a stable linear chemoattractant gradient for the length of the experiment, has no moving parts, and does not require an external pressure source (i.e. syringe pump). The key feature in the design of the whole blood microfluidic device is the incorporation of a red blood cell (RBC) filtration comb that mechanically filters RBCs from entering the migration channel of the device. The right turns of this filtration comb prevent the need for size exclusion filtration, which would likely be clogged by RBCs and therefore block the chemoattractant gradient from reaching the actively migrating neutrophils in the WB. The incorporation of the whole blood microfluidic device in a 12 or 24-well plate facilitates the screening of multiple mediators of human or murine neutrophil chemotaxis simultaneously.
1. Microfluidic Device Fabrication
2. Microfluidic Assay Preparation
3. Sample Preparation
Human Neutrophils From Capillary Blood
Human Neutrophils From Venous Blood
Neutrophil Separation From Whole Blood - Positive Control
4. Microscopy and Image Analysis for Neutrophil Chemotaxis Measurements
5. Statistical Analysis
The whole blood (WB) neutrophil chemotaxis assay was validated by measuring the accumulation of neutrophils towards a fMLP gradient (Movie S1). Results confirm that RBCs are trapped by the filtration comb while neutrophils (blue) are able to actively migrate out of whole blood (Figure 3A and Movie S1). The stable linear chemoattractant gradient (green) formed by the whole blood microfluidic device was confirmed using FITC-labeled dextran (Figure 3A
In this work, we developed a microfluidic platform to measure neutrophil chemotaxis from a droplet of blood (2 µl). The on-chip mechanical filtration of RBCs from actively migrating neutrophils circumvents the need for cumbersome cell separation methods such as density gradients10, positive selection11, or negative selection12, which are prone to introduce artifacts by activating neutrophils. The mechanical filtration of RBCs distinguishes our technology from other microfluidic chips...
There are no conflicts of interest to disclose.
Support from the National Institutes of Health (grants GM092804, DE019938) and Shriners Burns Hospital.
Name | Company | Catalog Number | Comments |
Device Fabrication | |||
SU-8 | Microchem | Y131273 | |
Polydimethylsiloxane (PDMS) | Ellsworth Adhesives | Sylgard 184 1.1 lb. Kit | |
Standard glass slides | Fisher Scientific | 125495 | 1 X 3 inches |
Glass-bottom plate | MatTek | P12G-1.5-14-F | |
Harris Uni-Core, Tip Diameter 5.0 mm | Ted Pella, Inc. | 15081 | |
Harris Uni-Core, Tip Diameter 1.5 mm | Ted Pella, Inc. | 15072 | |
Microfluidic Assay Preparation and Analysis | |||
Gel-loading pipet tip | Fisher Scientific | 02-707-139 | |
Syringe | Fisher Scientfic | 309602 | |
Blunt tip needle, 30 G ½ in. | Brico Medical Supply | BN3005 | |
Vacutainer, Heparin | Becton Dickinson | ||
HBSS | Sigma-Aldrich | ||
Human serum albumin | Sigma-Aldrich | A5843-5G | 0.2% final concentration in HBSS |
Fibronectin | Sigma-Aldrich | F0895-1MG | |
fMLP | Sigma-Aldrich | F3506-10MG | |
SurgiLance safety lancet, 2.2-mm depth, 22 G | SLN240 | ||
Hoescht stain | Life Technologies | H3570 | |
Positive Control | |||
HetaSep | STEMCELL Technologies Inc. | 7906 | |
EasySep Human Neutrophil Enrichment Kit | STEMCELL Technologies Inc. | 19257 | |
Plasma Asher | March Instruments | P-250 | |
Lindberg/Blue M Oven | Thermo Scientific | 13-258-30C | |
Stainless Steel Precision Tweezers | Techni Tool | 758TW458 | |
Bel-Art Scienceware Chemical-Resistant Vacuum Desiccator | Fisher Scientific | 08-594-15A | |
Dataplate Digital Hot Plate | Alpha Multiservices | PMC 720 | |
Nikon TiE inverted microscope | Nikon - Micro Video Instruments Inc. | MEA53100 | |
CFI Plan Fluor DL 10X NA 15.2 wd Objective | Nikon - Micro Video Instruments Inc. | MRH20101 | |
Lumen 200 with 2 Meter Light Guide for Nikon | Nikon - Micro Video Instruments Inc. | 500-L200NI2 | |
DAPI/Hoechst/AMCA Narrow Band 32-mm Exciters - 25-mm Emitters | Chroma - Micro Video Instruments Inc. | 31013v2 | |
Retiga R 2000 cooled CCD Camera 1,600 x 1,200 pixels | Qimaging - Micro Video Instruments Inc. | RET-2000R-F-M-12-C |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved