A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Confocal microscopy is used to image quiescent and flowing colloid-polymer mixtures, which are studied as model systems for attractive suspensions. Image analysis algorithms are used to calculate structural and dynamic metrics for the colloidal particles that measure changes due to geometric confinement.
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.
This paper demonstrates (a) confocal imaging of quiescent and flowing confined colloid-polymer mixtures in two and three dimensions and (b) particle-tracking and correlation analyses of the resultant images to obtain quantitative information on the phase behavior and flow properties.
Colloidal suspensions with attractive interparticle interactions appear ubiquitously in technological applications as materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and energy storage8. A common feature of these applications is that the particles must be flowed through fine geometries, such as nozzles, print heads, microchannels, or porous media, and/or be shaped into thin films or rods. Techniques used to probe the structure of micron-sized colloids in confined geometries, including electron microscopy17,18, x-ray microscopy19, and laser-diffraction microscopy20, can be used to measure the structure and dynamics of particles on the microscale. These techniques, however, do not allow access to the trajectories of individual particles, from which structural and dynamic metrics can be computed for direct comparison to numerical simulations21,22.
Confocal microscopy is a variant of fluorescence microscopy that enables imaging of thin sections of a fluorescent sample. For colloidal science10, this technique is particularly useful for imaging deep within dense suspensions or in three dimensions. Particle-tracking algorithms23 applied to two- or three-dimensional time series of confocal micrographs yield the trajectories of all visible particles. As a result, the combination of confocal microscopy and particle-tracking has been applied to study the phase behavior, structure, and dynamics of colloidal suspensions, including ordered crystals24-27 and disordered glasses28-31 and gels32-35.
Other image analysis algorithms can be applied to measure particle dynamics from time series of confocal micrographs. For example, diffusive particle dynamics can be studied by analyzing the fluctuations in intensity over time using confocal differential dynamic microscopy36. When the particle displacements are larger than the interparticle spacing, image correlation37 based on particle image velocimetry38-40 can be applied to measure velocity profiles of the particles. The combination of tracking and correlation algorithms has allowed colloidal dynamics to be measured in systems undergoing slow and fast flow11-16,41-45.
We use colloid-polymer mixtures as models for attractive colloidal suspensions9. In these mixtures, the range and strength of the attractive interparticle potential are controlled via the ratio of the polymer radius of gyration to the particle radius and the concentration of the polymer and the electrostatic repulsion is controlled via the addition of a monovalent organic salt46. Because the interparticle interactions can be carefully tuned, the solidification of these mixtures has been extensively studied with confocal microscopy 34,47-51.
Here we demonstrate confocal imaging and image analysis37 of quiescent and flowing colloid-polymer mixtures, in which the colloid volume fraction is held fixed at Φ = 0.15, that probe the effect of confinement on the phase behavior and flow properties of these mixtures. These techniques are widely applicable to particulate systems that are refractive index-matched and in which the particles and/or solvent can be labeled with a fluorescent dye.
1. Preparation of Colloid-polymer Mixtures
Note: This protocol uses poly(methyl methacrylate) (PMMA) particles, sterically stabilized using poly (12-hydroxystearic acid) and labeled with a fluorescent dye (such as Nile Red, rhodamine B, or fluorescein), that were synthesized following a standard recipe52.
2. Quiescent Sample Experiments: Phase Behavior
3. Flowing Experiments: Flow Properties
To demonstrate confocal imaging and particle-tracking, we investigated the effect of confinement on the phase behavior of colloid-polymer mixtures63-65. For these experiments the colloid diameter was 2a = 0.865 μm. The colloid volume fraction was fixed at Φ = 0.15 and the concentration of polymer cp was varied from 0 to 23.6 mg/ml. Representative confocal images are shown in Figure 263, left column. From the particle positions obtained using tr...
Colloidal suspensions are widely studied as models for confined phase behavior, because micron-sized colloidal particles exhibit significantly slower dynamics than atoms and molecules and thus can be readily imaged and tracked over time10. For these fundamental studies, understanding the effect of interparticle attractions on confined phase behavior offers the opportunity to explore phenomena such as capillary condensation and evaporation21,22,67. In addition, confined attractive suspensions appear ...
The authors have nothing to disclose.
Research reported in this publication was supported by a University of Houston New Faculty Grant, a seed grant from the Texas Center for Superconductivity, and the American Chemical Society Petroleum Research Fund (52537-DNI).
Name | Company | Catalog Number | Comments |
Cyclohexyl bromide | Sigma Aldrich | 135194 | CAS Number 108-85-0, Molecular wt. = 163.06, Used in stock solvent |
Decahydronapthalene | Sigma Aldrich | D251 | CAS Number 91-17-8, Molecular wt. = 138.25, Used in stock solvent |
Nile Red | Sigma Aldrich | 72485 | Fluorescent dye |
Fluorescein 5(6)-isothiocyanate | Sigma Aldrich | F3651 | Fluorescent dye |
Rhodamine B | Sigma Aldrich | 83689 | Fluorescent dye |
Dynamic Light Scattering | Brookhaven Instruments | BI-APD | DLS equipment used for particle size measurement |
Polystyrene | Varian/Agilent | PL20138-23 | Polystyrene (polymer) for inducing depletion attraction |
Tetrabutyl(ammonium chloride) (TBAC) | Sigma Aldrich | 86870 | monovalent salt |
UV Adhesive | Norland Adhesive | NOA 68T | Part Number 68T01 (UV cured adhesive) |
VT Eye | Visitech | VT Eye | confocal scanner |
VT Infinity | Visitech | VT Infinity | confocal scanner |
Microscope | Leica | DMI3000B | Inverted Microscope |
Centrifuge | Thermo Scientific | Sorvall ST 16 | 1-5,000 rpm |
Teflon tubing | smallparts | SLTT 26-72 | Zeus PTFE Sublite Wall Tubing 26 AWG 0.016" ID x 0.003" Wall |
Epoxy | Devcon | DA051 | 5 min epoxy |
Syringe | Micromate/Cadence | 5004 | glass syringe with metal luer lock tip |
Syringe tips | Nordson | 7018462 | 32 GA precision tips |
Syringe pump | New Era Pump system Inc. | NE1002X | Programmable microfluidic pump (syringepump.com) |
Weigh balance | Mettler Toledo | AB204-S | 0.0001-220 g |
PMMA particles | synthesized | poly(methylmethacrylate) colloidal particles |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved