JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Confocal microscopy is used to image quiescent and flowing colloid-polymer mixtures, which are studied as model systems for attractive suspensions. Image analysis algorithms are used to calculate structural and dynamic metrics for the colloidal particles that measure changes due to geometric confinement.

Abstract

The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.

Introduction

This paper demonstrates (a) confocal imaging of quiescent and flowing confined colloid-polymer mixtures in two and three dimensions and (b) particle-tracking and correlation analyses of the resultant images to obtain quantitative information on the phase behavior and flow properties.

Colloidal suspensions with attractive interparticle interactions appear ubiquitously in technological applications as materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and energy storage8. A common feature of these applications is that the particles must be flowed through fine geometries, such as nozzles, print heads, microchannels, or porous media, and/or be shaped into thin films or rods. Techniques used to probe the structure of micron-sized colloids in confined geometries, including electron microscopy17,18, x-ray microscopy19, and laser-diffraction microscopy20, can be used to measure the structure and dynamics of particles on the microscale. These techniques, however, do not allow access to the trajectories of individual particles, from which structural and dynamic metrics can be computed for direct comparison to numerical simulations21,22.

Confocal microscopy is a variant of fluorescence microscopy that enables imaging of thin sections of a fluorescent sample. For colloidal science10, this technique is particularly useful for imaging deep within dense suspensions or in three dimensions. Particle-tracking algorithms23 applied to two- or three-dimensional time series of confocal micrographs yield the trajectories of all visible particles. As a result, the combination of confocal microscopy and particle-tracking has been applied to study the phase behavior, structure, and dynamics of colloidal suspensions, including ordered crystals24-27 and disordered glasses28-31 and gels32-35.

Other image analysis algorithms can be applied to measure particle dynamics from time series of confocal micrographs. For example, diffusive particle dynamics can be studied by analyzing the fluctuations in intensity over time using confocal differential dynamic microscopy36. When the particle displacements are larger than the interparticle spacing, image correlation37 based on particle image velocimetry38-40 can be applied to measure velocity profiles of the particles. The combination of tracking and correlation algorithms has allowed colloidal dynamics to be measured in systems undergoing slow and fast flow11-16,41-45.

We use colloid-polymer mixtures as models for attractive colloidal suspensions9. In these mixtures, the range and strength of the attractive interparticle potential are controlled via the ratio of the polymer radius of gyration to the particle radius and the concentration of the polymer and the electrostatic repulsion is controlled via the addition of a monovalent organic salt46. Because the interparticle interactions can be carefully tuned, the solidification of these mixtures has been extensively studied with confocal microscopy 34,47-51.

Here we demonstrate confocal imaging and image analysis37 of quiescent and flowing colloid-polymer mixtures, in which the colloid volume fraction is held fixed at Φ = 0.15, that probe the effect of confinement on the phase behavior and flow properties of these mixtures. These techniques are widely applicable to particulate systems that are refractive index-matched and in which the particles and/or solvent can be labeled with a fluorescent dye.

Protocol

1. Preparation of Colloid-polymer Mixtures

Note: This protocol uses poly(methyl methacrylate) (PMMA) particles, sterically stabilized using poly (12-hydroxystearic acid) and labeled with a fluorescent dye (such as Nile Red, rhodamine B, or fluorescein), that were synthesized following a standard recipe52.

  1. Prepare a 3:1 w/w mixture of cyclohexyl bromide (CXB) and decahydronaphthalene (DHN) as a stock solvent. This mixture nearly matches the density and index of refraction of the particles. Add an organic salt, tetrabutylammonium chloride (TBAC)46, to the solvent at a concentration of 1.5 mM to partially screen the charges on the particles.
  2. To precisely determine the density of the particles, prepare a suspension at approximate particle volume fraction Φ = 0.10 in the CXB:DHN solvent. Centrifuge the suspension at 800 x g for 75 min and add CXB or DHN dropwise to improve the buoyancy matching. In these experiments, the density of the PMMA particles was measured to be ρ = 1.223 g/ml.
  3. Prepare a concentrated stock suspension of PMMA particles (here, Φ = 0.40) in the CXB:DHN solvent mixture.
  4. Prepare a concentrated solution of linear polystyrene (PS) in the CXB:DHN solvent mixture. Here, a solution of PS of molecular weight Mw ≈ 3,000,000 (radius of gyration rg = 15 nm) is prepared at concentration cp ≈ 50 mg/ml.
  5. Mix appropriate weights of the particle, polymer, and solvent stock mixtures to formulate suspensions at the desired concentrations of particles and polymers.
    Note: Here, suspensions of monodispersed particles are prepared at constant colloid volume fraction Φ = 0.15 and variable polymer concentration in the free volume53 cp = 0–25 mg/ml, and bidispersed suspensions containing two sizes of colloidal particles, with each size bearing a distinct fluorescent label, are prepared at fixed total colloid volume fraction Φ = 0.15, volume fraction ratio of small particles r = 0.50, and polymer concentration in the free volume of 5 or 25 mg/ml.
  6. After each suspension is prepared, add CXB or DHN dropwise and centrifuge the samples at 800 x g for at least 75 min to confirm that the particles and clusters within the suspension remain buoyancy matched.
  7. Equilibrate all samples for at least 24 hr prior to imaging experiments.

2. Quiescent Sample Experiments: Phase Behavior

  1. To determine the bulk phase behavior, fabricate rectangular chambers from glass coverslips (Figure 1a). For the colloid-polymer mixtures in this study, chambers of thickness h = 1 mm (set by the thickness of a microscope slide) give bulk behavior.
  2. To access multiple confinements in a single microscopy experiment, fabricate thin wedge-shaped chambers, using a single coverslip as a spacer on one wedge (Figure 1b). The opening angle of the chamber is <0.5°, so that in a single field of view the walls are very nearly parallel. A representative chamber allows access to confinement thicknesses of h = 6 to >100 µm.
  3. Build chambers on a coverslip base for imaging on an inverted microscope and seal with UV-curable epoxy, which does not dissolve in the CXB-DHN solvent mixture.
  4. Image samples using a confocal microscope. This protocol demonstrates imaging with a line-scanning confocal attached to an inverted microscope equipped with a 100X oil immersion lens of numerical aperture NA = 1.40.
  5. Excite the dyes using a laser source. Here wavelengths λ = 491 or 561 nm are used to excite the fluorescein and rhodamine/Nile Red dyes, respectively.
  6. In the point-scanning system, generate an image by rapidly scanning the focal point across the sample (in the x-y plane) using the confocal software. A two-dimensional image of 512 pixels x 512 pixels, covering approximately 50 μm x 50 μm, can be acquired in 1/32 sec. Improve the image quality by averaging multiple images or increasing the acquisition time.
  7. Locate the bottom of the chamber (z = 0), for example by focusing on particles adhered to its bottom. In this setup, the height (z) increases with increasing focus into the chamber.
  8. As an example, characterize the effect of confinement on the dynamics of the particles by acquiring a 2-D time series of images (in the x-y plane) at the midplane of the chamber. In a typical experiment, 500 images of dimension 512 pixels x 512 pixels are acquired at a frame rate of 1 frame/sec (time spacing ∆t = 1 sec).
  9. As a second example, characterize the 3-D structure of particles by acquiring a three-dimensional series of images (x,y,z). In a typical experiment, two-dimensional images (512 pixels x 512 pixels) are acquired at multiple z positions within the chamber, with a constant spacing of ∆z = 0.2 µm between consecutive images set by a piezo. A volume stack covering a thickness of h = 30 µm thus contains 151 images.
  10. Locate and track particles over time in 2-D or 3-D using particle-tracking software written in IDL23,54-56, MATLAB57,58, LabView59, or Python60. These algorithms typically allow the centers of the particles to be resolved within 40–50 nm. Successful particle tracking requires that the particles move less than the interparticle spacing between consecutive frames.
  11. From the particle positions, calculate structural and dynamic metrics. Three convenient metrics shown here are the 3-D pair correlation function g(r)61, the 2-D mean-squared displacement (MSD)58,62, and the 2-D self part of the van Hove correlation function Gs(x,t)58. The latter two metrics can be also calculated in 3-D.

3. Flowing Experiments: Flow Properties

  1. Fabricate a simple flow cell using a glass microcapillary with square cross-section (100 μm x 100 μm) that is affixed to Teflon tubing. Use glass coverslips to support the capillary and provide mechanical rigidity, as shown in the schematic in Figure 7.
  2. Load the colloid-polymer mixture into a glass syringe. Attach the syringe to a syringe pump or a pneumatic fluid dispensing system.
  3. Mount the flow cell setup onto the inverted microscope. Keep the syringe, flow cell, and outlet at the same height to minimize the effect of gravity on the flow profile.
  4. Control the flow rate of the suspension through the flow cell by the volumetric flow rate (for the syringe pump) or the applied pressure (for the pressure box). The average velocity of the suspension in the microchannel also depends upon the suspension formulation. Typical values of the maximum velocity in the square microchannel measured here are 200–2,000 μm/sec.
  5. During flow, acquire a 2-D confocal time series at fast frame rates. Here, 500 images of dimension 512 pixels x 512 pixels are acquired at 32 frames/sec (time spacing Δt = 1/32 sec) at different heights above the bottom of the microchannel (z = 0 µm) ranging from z = 5–50 µm. Each image covers roughly half of the lateral dimension (y) of the microchannel, as shown in the inset to Figure 7. If the particles appear elliptical, increase the frame rate of acquisition.
  6. As in quiescent experiments, locate the particles in 2-D using standard algorithms for locating and tracking particles in IDL or MATLAB. For slow flows, in which particles move less than the average interparticle distance between frames, use tracking algorithms to obtain the trajectories.
  7. Use image correlation to calculate the velocity profiles for fast flows.
    1. Subdivide the image into horizontal images of constant height (y) along the direction of flow (x). For two sequential images I1(x,y) and I2(x,y) shift the latter image by a factor Δx and then calculate the cross-covariance between I1(x,y) and I2(x+Δx,y).
    2. Identify the peak position of the histogram of Δx values that maximize the cross-covariance between each pair of images to obtain the mean advection velocity at each lateral position y. If this distribution is not strongly peaked, acquire images at a faster frame rate.

Results

To demonstrate confocal imaging and particle-tracking, we investigated the effect of confinement on the phase behavior of colloid-polymer mixtures63-65. For these experiments the colloid diameter was 2a = 0.865 μm. The colloid volume fraction was fixed at Φ = 0.15 and the concentration of polymer cp was varied from 0 to 23.6 mg/ml. Representative confocal images are shown in Figure 263, left column. From the particle positions obtained using tr...

Discussion

Colloidal suspensions are widely studied as models for confined phase behavior, because micron-sized colloidal particles exhibit significantly slower dynamics than atoms and molecules and thus can be readily imaged and tracked over time10. For these fundamental studies, understanding the effect of interparticle attractions on confined phase behavior offers the opportunity to explore phenomena such as capillary condensation and evaporation21,22,67. In addition, confined attractive suspensions appear ...

Disclosures

The authors have nothing to disclose.

Acknowledgements

Research reported in this publication was supported by a University of Houston New Faculty Grant, a seed grant from the Texas Center for Superconductivity, and the American Chemical Society Petroleum Research Fund (52537-DNI).

Materials

NameCompanyCatalog NumberComments
Cyclohexyl bromideSigma Aldrich135194CAS Number  108-85-0, Molecular wt. = 163.06, Used in stock solvent
DecahydronapthaleneSigma AldrichD251CAS Number 91-17-8, Molecular wt. = 138.25, Used in stock solvent
Nile RedSigma Aldrich72485Fluorescent dye
Fluorescein 5(6)-isothiocyanateSigma AldrichF3651Fluorescent dye
Rhodamine BSigma Aldrich83689Fluorescent dye
Dynamic Light Scattering Brookhaven InstrumentsBI-APDDLS equipment used for particle size measurement
Polystyrene Varian/AgilentPL20138-23Polystyrene (polymer) for inducing depletion attraction
Tetrabutyl(ammonium chloride) (TBAC)Sigma Aldrich86870monovalent salt
UV AdhesiveNorland AdhesiveNOA 68TPart Number 68T01 (UV cured adhesive)
VT EyeVisitechVT Eyeconfocal scanner
VT InfinityVisitechVT Infinityconfocal scanner
Microscope LeicaDMI3000BInverted Microscope
CentrifugeThermo ScientificSorvall ST 161-5,000 rpm
Teflon tubingsmallpartsSLTT 26-72Zeus PTFE Sublite Wall Tubing 26 AWG 0.016" ID x 0.003" Wall
EpoxyDevconDA0515 min epoxy
SyringeMicromate/Cadence5004glass syringe with metal luer lock tip
Syringe tips Nordson701846232 GA precision tips 
Syringe pump New Era Pump system Inc.NE1002XProgrammable microfluidic pump (syringepump.com)
Weigh balanceMettler ToledoAB204-S0.0001-220 g
PMMA particlessynthesizedpoly(methylmethacrylate) colloidal particles

References

  1. Shereda, L. T., Larson, R. G., Solomon, M. J. Local stress control of spatiotemporal ordering of colloidal crystals in complex flows. Physical Review Letters. 101, 038301-0310 (2008).
  2. Conrad, J. C., et al. Designing colloidal suspensions for directed materials assembly. Current Opinion in Colloid and Interface Science. 16, 71-79 (2011).
  3. Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials. 16, 2193-2204 (2006).
  4. Mishra, B., Patel, B. B., Tiwari, S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine. 6, 9-24 (2010).
  5. Maitland, G. C. Oil and gas production. Curr. Opin. Colloid Interface Sci. 5, 301-311 (2000).
  6. Kelessidis, V., Maglione, R., Tsamantaki, C., Aspirtakis, Y. Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. J. Petrol. Sci. Eng. 53, 203-224 (2006).
  7. Ponnapati, R., et al. Polymer-functionalized nanoparticles for improving waterflood sweep efficiency: Characterization and transport properties. Industrial and Engineering Chemistry Research. 50, 13030-13036 (2011).
  8. Duduta, M., et al. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials. 1, 511-516 (2011).
  9. Poon, W. C. K. The physics of a model colloid-polymer mixture. Journal of Physics: Condensed Matter. 14, (2002).
  10. Prasad, V., Semwogerere, D., Weeks, E. R. Confocal microscopy of colloids. Journal of Physics: Condensed Matter. 19, 113102-1110 (2007).
  11. Kogan, M., Solomon, M. J. Electric-field-induced yielding of colloidal gels in microfluidic capillaries. Langmuir. 26, 1207-1213 (2010).
  12. Frank, M., Anderson, D., Weeks, E. R., Morris, J. F. Particle migration in pressure-driven flow of a Brownian suspension. Journal of Fluid Mechanics. 493, 363-378 (2003).
  13. Isa, L., Besseling, R., Morozov, A. N., Poon, W. C. K. Velocity oscillations in microfluidic flows of concentrated colloidal suspensions. Physical Review Letters. 102, 058302-0510 (2009).
  14. Isa, L., Besseling, R., Poon, W. C. K. Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Physical Review Letters. 98, (2007).
  15. Semwogerere, D., Morris, J. F., Weeks, E. R. Development of particle migration in pressure-driven flow of a Brownian suspension. Journal of Fluid Mechanics. 581, 437-451 (2007).
  16. Semwogerere, D., Weeks, E. R. Shear-induced particle migration in binary colloidal suspensions. Phys. Fluids. 20, (2008).
  17. Ramiro-Manzano, F., Bonet, E., Rodriguez, I., Meseguer, F. Layering transitions in confined colloidal crystals: The hcp-like phase. Physical Review E. 76, 050401-0510 (2007).
  18. Ramiro-Manzano, F., Meseguer, F., Bonet, E., Rodriguez, I. Faceting and commensurability in crystal structures of colloidal thin films. Physical Review Letters. 97, 028304-0210 (2006).
  19. Hilhorst, J., et al. hree-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. Langmuir. 28, 3614-3820 (2012).
  20. Luo, Y. -. Y., Hu, S. -. X., Lu, Y., Mai, Z. -. H., Li, M. Real time observation of partial dislocations in thin colloidal crystals. Applied Physics Letters. 95. 174107, (2009).
  21. Binder, K., Horbach, J., Vink, R. L. C., De Virgiliis, A. Confinement effects on phase behavior of soft matter systems. Soft Matter. 4, 1555-1568 (2008).
  22. De Virgiliis, A., Vink, R. L. C., Horbach, J., Binder, K. From capillary condensation to interface localization transitions in colloid-polymer mixtures confined in thin-film geometry. Physical Review E. 78, 041604-0410 (2008).
  23. Crocker, J. C., Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298-310 (1996).
  24. Gasser, U., Weeks, E. R., Schofield, A. B., Pusey, P. N., Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science. 292, 258-262 (2001).
  25. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P., Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science. 309, 1207-1210 (2005).
  26. Leunissen, M. E., et al. Ionic colloidal crystals of oppositely charged particles. Nature. 437, 235-240 (2005).
  27. Nagamanasa, K. H., Gokhale, S., Ganapathy, R., Sood, A. K. Confined glassy dynamics at grain boundaries in colloidal crystals. Proceedings of the National Academy of Sciences of the United States of America. 108. , 11323-11326 (2011).
  28. Kaya, D., Green, N. L., Maloney, C. E., Islam, M. F. Normal modes and density of states of disordered colloidal solids. Science. 329, 656-658 (2010).
  29. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. B., Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science. 287, 627-631 (2000).
  30. Sarangapani, P. S., Schofield, A. B., Zhu, Y. Direct experimental evidence of growing dynamic length scales in confined colloidal liquids. Phys. Rev. E. 83, 030502-0310 (2011).
  31. Sarangapani, P. S., Schofield, A. B., Zhu, Y. Relationship between cooperative motion and the confinement length scale in confined colloidal liquids. Soft Matter. 8, 814-818 (2012).
  32. Dibble, C. J., Kogan, M., Solomon, M. J. Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity. Phys. Rev. E. 74, 041403-0410 (2006).
  33. Dibble, C. J., Kogan, M., Solomon, M. J. Structural origins of dynamical heterogeneity in colloidal gels. Phys. Rev. E. 77, 050401-0510 (2008).
  34. Lu, P. J., et al. Gelation of particles with short-range attraction. Nature. 453, 499-504 (2008).
  35. Hsiao, L. C., Newman, R. S., Glotzer, S. C., Solomon, M. J. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proceedings of the National Academy of Sciences of the United States of America. 109. , 16029-16034 (2012).
  36. Lu, P. J., et al. Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy. Physical Review Letters. 108, 218103-2110 (2012).
  37. Besseling, R., Isa, L., Weeks, E. R., Poon, W. C. K. Quantitative imaging of colloidal flows. Advances In Colloid and Interface Science. 146. , 1-17 (2009).
  38. Wereley, S. T., Meinhart, C. D. Micron-resolution particle image velocimetry. Microscale Diagnostic Techniques. , 1-62 (2005).
  39. Angele, K. P., Suzuki, Y., Miwa, J., Kasagi, N. Development of a high-speed scanning micro PIV system using a rotating disc. Measurement Science and Technology. 17, 1639-1646 (2006).
  40. Klein, S. A., Posner, J. D. Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry. Measurement Science and Technology. 21, 105409-1010 (2010).
  41. Derks, D., Wu, Y. L., Van Blaaderen, A., Imhof, A. Dynamics of colloidal crystals in shear flow. Soft Matter. 5, 1060-1065 (2009).
  42. Ballesta, P., Besseling, R., Isa, L., Petekidis, G., Poon, W. C. K. Slip and flow of hard sphere colloidal glasses. Physical Review Letters. 101, 258301-2510 (2008).
  43. Rajaram, B., Mohraz, A. Microstructural response of dilute colloidal gels to nonlinear shear deformation. Soft Matter. 6, 2246-2259 (2010).
  44. Rajaram, B., Mohraz, A. Dynamics of shear-induced yielding and flow in dilute colloidal gels. Physical Review E. 84, (2011).
  45. Rajaram, B., Mohraz, A. Steady shear microstructure in dilute colloid–polymer mixtures. Soft Matter. 8, 3699-3707 (2012).
  46. Yethiraj, A., Van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature. 421, 513-517 (2003).
  47. Campbell, A. I., Anderson, V., Van Duijneveldt, J. S., Bartlett, P. Dynamical arrest in attractive colloids: The effect of long-range repulsion. Physical Review Letters. 94, 208301-2010 (2005).
  48. Klix, C. L., Royall, C. P., Tanaka, H. Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions. Physical Review Letters. 104, 165702-1610 (2010).
  49. Sedgwick, H., Egelhaaf, S. U., Poon, W. C. K. Clusters and gels in systems of sticky particles. Journal of Physics: Condensed Matter. 16, 10-1088 (2004).
  50. Zhang, T. H., Klok, J., Tromp, R. H., Groenewold, J., Kegel, W. K. Non-equilibrium cluster states in colloids with competing interactions. Soft Matter. 8, (2012).
  51. Dinsmore, A. D., Prasad, V., Wong, I. Y., Weitz, D. A. Microscopic structure and elasticity of weakly aggregated colloidal gels. Physical Review Letters. 96, (2006).
  52. Antl, L., et al. The preparation of poly(methyl methacrylate) latices in nonaqueous media. Colloid Surf. 17, 67-78 (1986).
  53. Aarts, D. G. A. L., Tuinier, R., Lekkerkerker, H. N. W. Phase behaviour of mixtures of colloidal spheres and excluded-volume polymer chains. Journal of Physics: Condensed Matter. 14, 7551-7561 (2002).
  54. Crocker, J. C., Weeks, E. R. Particle tracking using IDL. , (2011).
  55. Grier Grier, D. G. Lab Downloadable Software. , (2012).
  56. Smith, R., Friendly Spalding, G. U. s. e. r. -. . Freeware Image Segmentation and Particle Tracking. , (2005).
  57. Blair, D. L., Dufresne, E. R. The Matlab Particle Tracking Code Repository. , (2008).
  58. Kilfoil, M. L. . Biological Physics Software. , (2009).
  59. Milne, G. Particle Tracking. , (2006).
  60. Caswell, T. trackpy: A pure python implementation of Crocker-Grier for single particle tracking. , (2012).
  61. Weeks, E. R. IDL routines to calculate the pair correlation function g(r). , (2005).
  62. Breedveld, V., Crocker, J. C., Weeks, E. R. M. S. D. . , (2005).
  63. Spannuth, M., Conrad, J. C. Confinement-induced solidification of colloid-polymer depletion mixtures. Phys. Rev. Lett. 109, (2012).
  64. Spannuth, M., Conrad, J. C. Dynamics of confined colloid-polymer mixtures. AIP Conf. Proc. 1518, 351-356 (2013).
  65. Pandey, R., Conrad, J. C. Dynamics of confined depletion mixtures of polymers and bidispersed colloids. Soft Matter. , (2013).
  66. Pandey, R., Conrad, J. C. Effects of attraction strength on microchannel flow of colloid–polymer depletion mixtures. Soft Matter. 8, 10695-10703 (2012).
  67. Gelb, L., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Phase separation in confined systems. Reports on Progress in Physics. 62, 1573-1659 (1999).
  68. Parthasarathy, R. Rapid accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 9, 724-726 (2012).
  69. Peng, B., vander Wee, E., Imhof, A., Van Blaaderen, A. Synthesis of monodisperse, highly cross linked, fluorescent PMMA particles by dispersion polymerization. Langmuir. 28, 6776-6785 (2012).
  70. Elsesser, M. T., Hollingsworth, A. D., Edmond, K. V., Pine, D. J. Large core-shell poly(methyl methacrylate) colloidal clusters: synthesis, characterization, and tracking. Langmuir. 27, 917-927 (2011).
  71. Dullens, R. P. A., Derks, D., van Blaaderen, A., Kegel, W. K. Monodisperse core-shell poly(methyl methacrylate latex colloids). Langmuir. 19, 5963-5966 (2003).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Confocal ImagingConfined Colloid polymer MixturesColloidal SuspensionsAttractive Interparticle InteractionsFluorescent ColloidsNon adsorbing PolymersPolymer Radius Of GyrationColloid FluidsGelsCrystalsGlassesFluorescence MicroscopyThree dimensional ImagingSingle particle ScaleFlowing SuspensionsWedge shaped CellsMicrochannel Flow

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved