A subscription to JoVE is required to view this content. Sign in or start your free trial.
Measuring the osmotic water permeability coefficient (Pf) of cells can help understand the regulatory mechanisms of aquaporins (AQPs). Pf determination in spherical plant cell protoplasts presented here involves protoplasts isolation and numerical analysis of their initial rate of volume change as a result of an osmotic challenge during constant bath perfusion.
Studying AQP regulation mechanisms is crucial for the understanding of water relations at both the cellular and the whole plant levels. Presented here is a simple and very efficient method for the determination of the osmotic water permeability coefficient (Pf) in plant protoplasts, applicable in principle also to other spherical cells such as frog oocytes. The first step of the assay is the isolation of protoplasts from the plant tissue of interest by enzymatic digestion into a chamber with an appropriate isotonic solution. The second step consists of an osmotic challenge assay: protoplasts immobilized on the bottom of the chamber are submitted to a constant perfusion starting with an isotonic solution and followed by a hypotonic solution. The cell swelling is video recorded. In the third step, the images are processed offline to yield volume changes, and the time course of the volume changes is correlated with the time course of the change in osmolarity of the chamber perfusion medium, using a curve fitting procedure written in Matlab (the ‘PfFit’), to yield Pf.
Water uptake and flow across cellular membranes is a fundamental requirement for plant existence at both the cellular and the whole plant levels. At the cellular level, aquaporins (AQPs) play a key role in the regulation of the osmotic water permeability coefficient (Pf) of the cell membrane1-3.
To date, several methods have been employed in measuring the endogenous Pf of protoplast from different plant organs (i.e. roots, mesophyll, endodermis, etc., reviewed by Chaumont et al. 4). One of the approaches to measure Pf is to expose the protoplasts to an osmotic challenge and to monitor the initial rate of its volume change (i.e., the slope of the early linear phase of the volume change). Two different methods were previously described based on this approach, both based on an instantaneous exchange of solutions. The first one consists of immobilizing the protoplast with a suction micropipette and switching the solution flow5 and the second one of transferring the protoplast from one solution to another using a micropipette6. These micropipette suction and micropipette transferring methods, which allow image acquisition at the very start of the fast solution exchange (to capture the early linear phase of volume change), likely involve a physical stress to protoplasts and require specialized equipment and expert micromanipulation.
The method described here minimizes the disturbance to the cells, involves no micromanipulation and permits derivation of Pf when the bath perfusion is not instantaneous.
After the enzymatic digestion, the protoplasts, submerged in an isotonic solution, are immobilized on the coverslip-glass bottom of a Plexiglass (aka Lucite or perspex) chamber by charge interaction. Then, during a constant bath perfusion, the isotonic solution is flushed away by a hypotonic solution generating a hypoosmotic challenge to the protoplasts. The swelling of the protoplast is video recorded and then, by combining the information about the time course of the bath perfusion and the time course of the cell swelling, the Pf is determined by image processing and curve fitting procedures.
The advantages of this method are that the experiment is very efficient, i.e. it is possible to monitor a few cells simultaneously in a single assay, and that it does not require special equipment or particular micromanipulation skills. Several applications for this method are possible. For example, determination of the native Pf of a variety of cells from different tissues and plants, such as mesophyll and bundle sheath cells from Arabidopsis leaf7, maize leaf mesophyll or root cortex cells8-10 or suspension cultured cells11,12. In addition, it is possible to determine Pf of spherical animal cells such as oocyte cells11. Another example involves examination of AQP activity by transient expression of their gene in the protoplasts (or any other genes which may affect them; e.g., genes of kinases) and determination of their contribution to Pf; for example, expression of tomato AQP SlTIP2;2 in Arabidopsis mesophyll protoplasts by PEG transformation and determination the SlTIP2;2-related Pf13. Finally, examination of the effect on Pf of different molecules/substances (drugs, hormones, etc.) added to the solutions can also be examined, for example of the AQP blocker HgCl27.
The following protocol describes the isolation of protoplasts of Arabidopsis mesophyll cells and determination of their Pf.
1. Preparation of Solutions
2. Isolation of Arabidopsis Mesophyll Protoplasts
3. The Hypotonic Challenge Assay: Arabidopsis Mesophyll Cell Swelling
4. Analysis of the Cell Volume Change Using ImageJ
NOTE: To analyze the series of images of a swelling cell, use the ‘Image Explorer’ and ‘Protoplast Analyzer’ plugins in the ImageJ software (written by Xavier Draye)14. Starting with the chosen protoplasts at their first time point, the ‘Protoplast Analyzer’ plugin will detect automatically the protoplasts edges (contours) and calculate the time course of their areas during the experiment (the plugins are available with the PfFit analysis program, below).
5. Modeling the Rate of Osmolarity Change in the Experimental Chamber Using ImageJ and the Matlab Program PfFit
6. Determining the Pf using the Matlab Fitting Program PfFit
NOTE: In addition to the basic assumptions with regard to the behavior of a protoplast as a true and perfect osmometer11, the determination of Pf rests on the presumption that Pf may change with time, that this dynamics of Pf underlies the time course of the cell volume change and that three parameters suffice to describe it: Pfi (the initial value of Pf), SlopePf (the rate of the linear change of Pf) and Delay (the period from the start of the bath osmolarity change till the start of the cell volume change). Different models can be tested, including different combinations of these parameters and their values, including null values11. PfFit searches for the best combination of these parameters to yield – by calculation – the most faithful reproduction of the experimental time course of the cell volume change11, calculated, in turn, from the imported series of cell-contour areas (see also the Supplemental ‘PfFit User Guide’).
In order to determine the Pf and compare the activity of different AQPs, mesophyll protoplasts from Arabidopsis leaf are used. These protoplasts were found to have low basal (background) Pf levels 7 and can serve as a functional-expression system to enable reproducible Pf measurements.
Protoplasts from a mature leaf from a 6 week old Arabidopsis plant were isolated and three gene constructs with AQP genes from Arabidopsis (AtPIP2;1) and maiz...
Described here is a simple and very efficient procedure for measuring the Pf of isolated plant protoplasts, applicable in principle also to other spherical cells, e.g., frog oocytes11. This method is based on measuring the Pf in response to an osmotic challenge to the cell. In contrast to the other methods based on this approach, however, the change of solutions, i.e., of the osmolarity, is not instantaneous, but gradual, during a constant bath perfusion, starting with t...
We have nothing to disclose.
This work was supported by grants from the Belgian National Fund for Scientific Research (FNRS), the Interuniversity Attraction Poles Programme-Belgian Science Policy and the “Communauté française de Belgique-Actions de Recherches Concertées” to FC, from the Israel Science Foundation Jerusalem (ISF) to MM (Grant # 1311/12), and to NM (Grant # 1312/12).
Name | Company | Catalog Number | Comments |
KCl | Chem-Impex International | 01247-1 | http://www.chemimpex.com Any source, anal. grade |
CaCl2 | Merck | 11718006 | http://www.merck.com Any source, anal. grade |
2-(N-morpholine)-ethanesulphonic acid (MES) | Sigma | 15152002 | http://www.sigmaaldrich.com Any source, anal. grade |
D-Sorbitol | Sigma | 18032003 | http://www.sigmaaldrich.com Any source, anal. grade |
Cellulase | Worthington, Lakewood, NJ, USA | LS002603 | http://www.worthingtonbiochem.com |
Pectolyase | Karlan, Phonix, AZ, USA | 8006 | http://www.karlan.com |
Polyvinyl-pyrrolidone K 30 (PVP) | Sigma | 81420 | http://www.sigmaaldrich.com |
Bovine Serum Albumin (BSA) | Sigma | A9418-5G | http://www.sigmaaldrich.com |
Protamine sulphate | Sigma | P4380 | http://www.sigmaaldrich.com |
Poly-L-Lysine | Sigma | P8920 | http://www.sigmaaldrich.com |
Xylene cyanol | Sigma | X4126 | http://www.sigmaaldrich.com |
Silicone vacuum grease heavy | Merck | 107921 | https://merck-chemicals.co.id/chemicals/silicone-high-vacuum-grease-heavy/MDA_CHEM-107921/p_LMib.s1Oxr4AAAEvXHg49in.?SecurePage=true&SEO_ErrorPageOccurred=true&attachments=CoA |
Inverted microscope | Nikon | Eclipse TS100/TS100F | http://www.nikoninstruments.com |
Peristaltic pump | BIO-RAD | EP-1 Econo Pump | http://www.bio-rad.com |
Grayscale digital camera | Scion Corporation | CFW-1308M | http://www.scioncorp.com |
CMU 1394 Camera Driver’ plugin for ImageJ | Carnegie Mellon | http://www.cs.cmu.edu/~iwan/1394/download.html Free software | |
ImageJ | NIH | http://rsb.info.nih.gov/ij/ Free software | |
Econo Gradient Pump Fittings Kit | BIO-RAD | 731-9006 | http://www.bio-rad.com |
Connectors, manifold | DirectMed | http://directmed.com/main/Plastic-Medical-Tubing-Connectors.html?ACTION=S | |
Burette infusion sets (columns) | Welford | IF-BR-001 | http://www.welfordmedical.com/content.php?id=61 |
Tubing | TYGON | R-3603 | http://www.usplastic.com |
Plexiglass slide etc. | Perspectiv | http://www.perspectiv.co.il/index-en.html Our slide was custom-made, it does not appear on the web site but a copy can be remade to order as 'a copy of the slide already made for M. Moshelion'. | |
3M packaging Scotch tape 1'', clear | Viking Industrial, UK | VKMONO25 | http://www.vikingtapes.co.uk/c-428-vkmono-mono-filament-tape.aspx#.UuvqOftdy_8 any clear adhesive tape (sellotape, etc.) is likely to be OK |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved