このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
We describe a protocol for deriving lentiviral-based reprogrammed and characterized factor-free human induced pluripotent stem cells and conversion into putative clinical-grade conditions.
ヒト誘導多能性幹細胞(hiPSCs)は、レンチウイルスベースの再プログラミング方法論を用いて生成することができる。しかし、ゲノムの積極的に転写領域内に残っている可能性の発癌性遺伝子の痕跡は、人間の治療への応用1で使用するための彼らの可能性を制限する。さらに、治療に関連する誘導体に幹細胞のリプログラミングまたは分化由来の非ヒト抗原は、ヒト臨床状況2において使用されるこれらのhiPSCsを排除する。このビデオでは、外因性の導入遺伝子の自由要因フリーhiPSCsを再プログラムし、分析するための手順を提示する。これらhiPSCsその後、レンチウイルスを含む特定のイントロンにおける遺伝子発現異常を分析することができる。この分析は、以前に3遺伝子発現の差を検出するために使用されるあまり敏感技術に勝る利点を有する敏感な定量的ポリメラーゼ連鎖反応(PCR)を用いて行ってもよい。への完全な変換臨床グレードの適正製造基準(GMP)の条件は、ヒトの臨床関連性を可能にする。私たちのプロトコルは、別の方法論が提供する現在のセーフハーバー基準による非ヒト抗原にすべての免疫原性リスクを排除する必要があり、人間の治療用途-ためのGMPグレードのhiPSCsを導出するための要因の無特徴付けられたhiPSC系誘導体を、拡張し、含まれることを提供しています。このプロトコルは、任意のタイプのレンチウイルス再プログラミングされた細胞に広く適用可能であり、GMPグレードの条件に再プログラミングされた細胞を変換するための再現性のある方法を提供します。
Adult human cells have been shown to be capable of undergoing epigenetic remodeling and reprogramming, as a result of lentiviral-based expression of four key transcription factors4,5. An important advancement in the reprogramming field was the use of a single excisable lentiviral stem cell cassette (STEMCCA), which housed all four reprogramming transcription factors that allowed a precise stoichiometric ratio of protein expression6. Additionally, when transduced in specific multiplicity of infection ranges, STEMCCA can lead to predominantly single genomic integration events during the reprogramming process7. The introduction of an excisable version of STEMCCA, which utilizes Cre/loxP technology followed by excision of the reprogramming vector after derivation of the stem cell line, enabled factor-free human induced pluripotent stem cell (hiPSC) lines to be derived8. Additionally, in order to enhance therapeutic applications of hiPSCs, a novel, quick, and readily applicable methodology for good manufacturing practice (GMP)-grade cell line conversion, from xeno-containing to xeno-free conditions, needed to be implemented. Here, we discuss a relevant methodology that more precisely assesses integrated gene expression differences, specifically when integrated into an intron, and clinical-grade cell conversion into putative GMP conditions.
Previous research has used only relatively insensitive microarray transcriptional analysis to analyze gene expression differences in integrated genes after STEMCCA transduction3,9. Here, we introduce the methodology of sensitive quantitative polymerase chain reaction (PCR) analysis, to further examine integrated gene expression differences. Importantly, current safe-harbor criteria discard hiPSCs that have genes with viral integrations, thus limiting the applicability of these cells for downstream human cellular therapeutics9. We propose that the status quo may change with the use of fully characterized and transgene-free intronically reprogrammed hiPSCs. Additionally, we introduce a robust GMP-grade cell conversion protocol that can be readily applied to a variety of different cell types, which were originally derived under xeno-containing conditions10. This provides significant opportunities for the development of future cell reprogramming experiments, which require clinical-grade conditions to maintain human therapeutic relevance.
These methodologies provide a foundation upon which current safe-harbor criteria may be expanded to include characterized STEMCCA reprogrammed hiPSC lines that maintain a normal gene expression profile after STEMCCA excision from the integrated intron. Also, full conversion into clinical-grade conditions, free from non-human animal antigens, will help to incorporate many more cell types, which have previously been reprogrammed and characterized only in xeno-containing conditions. These methodologies combined, are persuasive grounds for the US Food and Drug Administration (FDA) to consider expanding their limited approval from human embryonic stem cell (ESC)-based therapeutics to hiPSC-based therapeutics11.
We recently detailed the derivation of a factor-free hiPSC line that was fully characterized and converted into putative clinical-grade conditions10. Here, we detail the protocol for hiPSC derivation by utilizing the STEMCCA lentivirus. These stem cells then undergo an excision process followed by gene expression characterization. Finally, the hiPSCs are converted over into GMP-grade conditions by a slow conversion methodology.
注:この方法は、内素晴らしいら 10の報告された研究に使用した。
STEMCCA 1.リプログラミング成人ヒト皮膚線維芽細胞
2.ベクトル統合サイト分析とSTEMCCA切除
前後の切除したhiPSCsから定量的PCRを用いた遺伝子発現差の3定量
GMPグレードの条件に4.コンバージョン
5.キャラクタライズGMPグレードのポストを切除hiPSCs
我々はSTEMCCAレンチウイルスベースの再プログラミングアプローチを用いて、臨床グレードの因子フリーhiPSCsを導出するためのプロトコルを提示する。 図1Aは、MEFの層上STEMCCAアプローチを再プログラミングした後に、三つの異なる予め切除hiPSC系統の代表的な写真を示す。 STEMCCAの再プログラミングアプローチの主な利点は、異なる研究グループと場所で、複数の科学者によって?...
私たちは、要因のないhiPSCsを導出し、将来ヒトの治療における下流細胞分化のためのGMPグレードの条件にこれらの細胞を変換することにより、それらが臨床的に関連することの方法論について説明します。このプロトコルは、種々の細胞型に広く適用可能であるが、我々が原因の患者からの抽出の容易さとパーソナライズされたヒトの治療への適用のために、ヒト皮膚線維芽細胞を再プログ?...
James A. Byrne (JAB) and Agustin Vega-Crespo receive research funding from Fibrocell Science, Inc. JAB is a scientific consultant for Fibrocell Science, Inc. No other authors have any competing interests to disclose.
We would like to thank Patrick C. Lee, Cyril Ramathal, and Saravanan Karumbayaram (SK) for their assistance in performing the iPSC derivation and characterization experiments; Aaron Cooper for performing the iPSC analysis experiments; Vittorio Sebastiano and Renee A. Reijo Pera for directing the initial reprogramming efforts; SK, William E. Lowry, Jerome A. Zack, and Donald B. Kohn for directing the establishment of the UCLA GMP facilities permitting the conversion and characterization of clinical-grade iPSCs; Gustavo Mostoslavsky for providing us with the STEMCCA polycistronic reprogramming vector. This work is based on a research collaboration with Fibrocell Science and the Clinical Investigations for Dermal Mesenchymally Obtained Derivatives (CIDMOD) Initiative to generate safe personalized cellular therapeutics. This work was supported by funding from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, The Phelps Family Foundation, Fibrocell Science, Inc., and the UCLA CTSI Scholar’s Award to JAB.
Name | Company | Catalog Number | Comments |
Media and reagents | |||
DMEM/F12 (basal media) | Invitrogen (Carlsbad, CA, USA) | 11330057 | |
Fetal bovine serum | Invitrogen | 16000044 | |
Minimum essential medium (MEM) non-essential amino acids (NEAA), 100x | Invitrogen | 11140050 | |
Glutamax, 100x | Invitrogen | 35050-061 | |
PenStrep, penicillin-streptomycin, 100x | Invitrogen | 15140-122 | Thaw at 4 °C, aliquot and store at −20 °C |
Knockout serum replacement | Invitrogen | 10828028 | Thaw at 4 °C, aliquot and store at −20 °C |
Trypsin/EDTA, 0.5% | Invitrogen | 15400-054 | Dilute stock out to 0.05% in 1x PBS |
Basic fibroblast growth factor | GlobalStem (Rockville, MD, USA) | GSR-2001 | Reconstitute to 10 µg/ml stock in 0.1% bovine serum albumin dissolved in 1x PBS and store at −80 °C |
β-mercaptoethanol | Millipore (Billerica, MA, USA) | ES-007-E | |
Matrigel (basement membrane matrix) | BD Biosciences (San Jose, CA, USA) | 356231 | Dilute stock Matrigel vial with 10 ml of DMEM/F12 while on ice for a 1:2 dilution. Aliquot and store at −20 °C. |
CELLstart (Synthetic Substrate) | Invitrogen | A1014201 | |
Stemmolecule Y27632 | Stemgent (Cambridge, MA, USA) | 04-0012-02 | |
Puromycin | Invitrogen | A1113802 | |
LightCycler 480 Probes Master | Roche (Basel, Switzerland) | 4707494001 | |
ProFreeze-CDM Medium/freezing medium | Lonza (Basel, Switzerland) | 12-769E | |
Dimethyl sulfoxide | Sigma-Aldrich (St. Louis, MO, USA) | D8418 | |
PBS | Invitrogen | 14190-250 | |
100 BP DNA Ladder | Invitrogen | 15628019 | |
SYBR Safe DNA Gel Stain 10,000x | Invitrogen | S33102 | |
Agarose | Bio-Rad Laboratories, Inc. (Hercules, CA, USA) | 161-3101 | |
Gelatin, from porcine skin | Sigma-Aldrich | G1890-100G | Make stock at 0.2% in PBS, autoclave and store at room temperature. |
mTeSR1 | StemCell Technologies (Vancouver, BC, Canada) | 5850 | Combine Supplement 5x with the basic medium, aliquot and store at 4 °C for up to 2 weeks. |
Stemedia NutriStem XF/FF Culture Medium | Stemgent | 05-100-1A | Thaw at 4 °C O/N, aliquot and store at 4 °C for up to 2 weeks. |
Primocin | InvivoGen (San Diego, CA, USA) | ant-pm-1 | |
Accutase (Dissociation Reagent) | Invitrogen | A1110501 | |
Donkey anti-Chicken IgG AlexaFluor 488 | Jackson ImmunoResearch (West Grove, PA, USA) | 703-546-155 | |
Polybrene/transfection agent | Millipore | TR-1003-G | |
Plasticware | |||
12-well plates | VWR (West Chester, PA, USA) | 29442-038 | |
6-well plates | VWR | 29442-042 | |
10-cm plates | Sigma-Aldrich | Z688819 | |
18-gauge needle | Fisher Scientific (Pittsburgh, PA, USA) | 148265D | |
21-gauge needle | Fisher Scientific | 14-829-10D | |
Equipment | |||
BD LSRII Flow Cytometer | KSystem by Nikon (Tokyo, Japan) | ||
BD FACSDiva Version 6.1.3 Software | BD Biosciences | ||
Kits | |||
PureLink Genomic DNA Mini Kit | Invitrogen | K182000 | |
KAPA HiFi Hotstart ReadyMix PCR Kit | KAPA Biosystems (Wilmington, MA, USA) | KK2601 | |
High Pure RNA Isolation Kit | Roche | 11828665001 | |
Transcriptor First Strand cDNA Synthesis Kit | Roche | 4379012001 | |
Sialix anti-Neu5Gc Basic Pack Kit | Sialix (Newton, MA, USA) | Basic Pack | |
Media | |||
Combined media 1 | StemCell Technologies and Stemgent | Consists of equal parts mTeSR1 and Nutristem | |
Combined media 2 | StemCell Technologies and Stemgent | Consists of equal parts TeSR2 and Nutristem | |
HUF Media | Dulbecco’s modified Eagle’s medium/F12 [DMEM/F12] supplemented with 10% fetal bovine serum, 1x non-essential amino acids, 1x Glutamax, and 1x Primocin | ||
Human Pluripotent Stem Cell Media | DMEM/F12 supplemented with 20% knockout serum replacement, 1x Glutamax, 1x non-essential amino acids, 1x Primocin, 1x β-mercaptoethanol, and 10 ng/ml basic fibroblast growth factor. | ||
DMEM/F12, Dulbecco’s modified Eagle’s medium/F12; PBS, phosphate-buffered saline. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved