* These authors contributed equally
Here, we present detailed protocols for solid-state amide hydrogen/deuterium exchange mass spectrometry (ssHDX-MS) and solid-state photolytic labeling mass spectrometry (ssPL-MS) for proteins in solid powders. The methods provide high-resolution information on protein conformation and interactions in the amorphous solid-state, which may be useful in formulation design.
Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (Nfast, Nslow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol.
Protein drugs are the fastest growing sector of the biopharmaceutical industry and offer promising new treatments for previously intractable diseases, including hormonal disorders, cancers and autoimmune diseases1. In 2012, the global biotherapeutics market reached $138 billion and is expected to reach $179 billion by the year 20182. Proteins are larger and more fragile than conventional small molecule drugs and so are more susceptible to many types of degradation3. To ensure adequate shelf-life and stability, protein drugs are often formulated as lyophilized (i.e., freeze-dried) solid powders. However, a protein may still undergo degradation in the solid state, particularly if its native structure is not preserved during the lyophilization process4,5. Assuring that structure has been retained is feasible only if there are analytical methods that can probe protein conformation in the solid-state with sufficient resolution.
NMR spectroscopy6 and X-ray crystallography7 are the commonly used high resolution methods to assess protein structure in solution and crystalline solids8. Because of the nature of excipients and the processing methods used, lyophilized protein formulations are usually amorphous rather than crystalline9. The lack of homogeneity and microscopic order makes the above mentioned techniques impractical for proteins in amorphous solids. Fourier transform infrared spectroscopy (FTIR)10, Raman spectroscopy11 and near infrared spectroscopy (NIR)12 have been regularly used by the biopharmaceutical industry to compare protein secondary structure in lyophilized powders to that of the native solution-state structure. However, these methods are low resolution and can only provide information on global changes in secondary structure. Solid-state structural characterization using FTIR has shown either weak13,14 or poor15 correlation with long-term storage stability. These limitations highlight the need for suitable high resolution methods to identify protein structural perturbations in the solid-state.
Chemical labeling coupled with proteolysis and mass spectrometric analysis has emerged as a powerful approach to monitoring protein structure and molecular interactions in aqueous solution. In pharmaceutical development, HDX-MS has been used for epitope mapping in antigen-antibody interactions16,17, to map receptor-drug interactions18, to monitor the effects of post-translational modifications on the conformation of protein drugs19, and to compare batch-to-batch variation in developing biosimilars20. Similarly, photoactivatable ligands have been used to identify drug targets and to determine binding affinity and specificity of drug-receptor interactions21,22. To extend the application of these methods to lyophilized formulations, our group has developed solid-state hydrogen deuterium exchange mass spectrometry (ssHDX-MS) and solid-state photolytic labeling mass spectrometry (ssPL-MS) to study protein conformations and excipient interactions in lyophilized samples with high resolution.
In both ssHDX-MS and ssPL-MS, the protein is labeled under ideal reaction conditions in lyophilized solids, and the samples are then reconstituted and analyzed by mass spectrometry with or without proteolytic digestion. ssHDX-MS provides information on main chain exposure to deuterium vapor, while ssPL-MS provides information on the environment of side chains (Figure 1). The two methods thus can provide complementary information about protein conformation in the solid-state. Here, we provide a general protocol for studying proteins in lyophilized solids using ssHDX-MS and ssPL-MS (Figure 2), using Mb as a model protein. We show the ability of the two methods to distinguish differences in formulations with two different excipients.
Figure 1: ssHDX and ssPL measure protein structure in lyophilized solids through different labeling mechanisms. (A) In HDX, the backbone amide hydrogens exchange with deuterium as a function of protein structure and D2O accessibility. In the solid-state, the rate and extent of deuterium exchange depend on the level of D2O sorption, protein mobility (unfolding and refolding events) and the nature of the excipients present in the solid matrix. (B) In PL, UV irradiation at 365 nm initiates the formation of a reactive carbene intermediate from the diazirine functional group of pLeu and is inserted non-specifically into any X-H bond (X = any atom), or added across a C=C bond in its immediate vicinity. In the solid-state, the rate and extent of labeling depend on the local concentration of the labeling agent, irradiation time, protein structure and the nature of excipients present in the solid matrix. Panels A and B show the maximum theoretical labeling that can occur on backbone and side-chains respectively in protein.
Figure 2: Schematic showing solid-state HDX-MS (A) and PL-MS (B) for protein in lyophilized formulation.
1. Sample Preparation and Lyophilization
Formulations | Composition (mg/ml) prior to lyophilization | ||||
Mb | Trehalose | Sorbitol | pLeu c | Potassium, Phosphate, pH 7.4 | |
MbT a | 1.7 | 3.4 | - | - | 0.4 |
MbS a | 1.7 | - | 3.4 | - | 0.4 |
MbT + pLeu b | 1.7 | 3.4 | - | 14.3 x 10-3 to 1.43 | 0.4 |
MbS + pLeu b | 1.7 | - | 3.4 | 14.3 x 10-3 to 1.43 | 0.4 |
Table 1: Composition of lyophilized Mb formulations. a Formulations used for the ssHDX-MS study. b Formulations used for the ssPL-MS study. c L-2-amino-4,4-azipentanoic acid or photo-leucine (pLeu). pLeu at five different concentrations (14.3 x 10-3 to 1.43 mg/ml) corresponding to 1x, 10x, 20x, 50x and 100x molar excess relative to Mb were co-lyophilized with MbT and MbS formulations.
2. ssHDX-MS for Intact Protein
3. ssHDX-MS for Protein at Peptide Level
4. ssPL-MS for Intact Protein
5. ssPL-MS for Protein at the Peptide Level
Here, ssHDX-MS and ssPL-MS have been used to study the effect of excipients on the conformation and solid-state interactions of lyophilized Mb formations. The concentrations of protein and excipients used in this study are given in Table 1. Representative results from the ssHDX-MS and ssPL-MS analysis of lyophilized Mb obtained by following the above protocols are presented.
Deuterium uptake at intact protein level
ssHDX-MS is able to distinguish between Mb formulations at intact level. The deconvoluted mass spectra of intact Mb following 144 hr of ssHDX from formulation MbS showed greater deuterium uptake than formulation MbT (Figure 3A). On an average, MbS showed 46% greater deuterium uptake than MbT (Table 2).
Figure 3: ssHDX-MS for intact Mb: (A) Deconvoluted mass spectra of deuterated intact Mb from formulations MbT (solid line) and MbS (dashed line) following 144 hr of ssHDX. The deconvoluted mass spectrum of undeuterated intact Mb is also shown (dotted line). (B) ssHDX kinetics for intact Mb in formulations MbT (solid line) and MbS (dashed line). The time course of ssHDX was fitted to an equation for two phase exponential association using Graph Pad Prism software version 5 (n = 3, ± SD).
The deuteration kinetics for intact MbS and MbT are similar at early time points (1-4 hr), but MbS showed increased deuterium exchange with increase in time (8-144 hr) (Figure 3B). This suggests the importance of selecting longer time points for ssHDX at lower RH and temperature conditions. Also, the D2O sorption and diffusion process may affect the rate of ssHDX at the early time points. Our previous studies have shown that moisture sorption in ssHDX is complete in a period of hours, and has minimal contribution to exchange kinetics beyond this time. The observed rate and extent of exchange therefore are not simply measures of D2O adsorbtion27,28. The small error bars in Figure 3B, indicating standard deviations from three independent ssHDX-MS samples, show that the experiment is highly reproducible.
Deuterium Uptake (%) b | Nfast c | kfast c | Nslow c | kslow c | |
MbT a | 15.9 ± 0.5 | 13.1 (0.8) | 0.43 (0.03) | 11.0 (0.9) | 0.019 (0.001) |
MbS a | 23.2 ± 0.5 | 15.4 (0.7) | 0.49 (0.04) | 19.2 (0.6) | 0.024 (0.002) |
% change d | 46% | 18% | 14% | 75% | 26% |
Table 2: Quantitative measures of deuterium uptake in ssHDX studies of Mb formulations. a See Table 1 for composition. b Percent deuterium uptake relative to theoretical maximum by intact Mb after 144 hr of HDX at 5 °C, 43% RH (n = 3, mean ± SD). c Parameters determined by nonlinear regression of ssHDX-MS kinetic data. Time course of deuterium exchange for intact Mb was fitted to a biexponential association model (Eqn. 2). Values in parentheses are standard errors of the regression parameters. d The percent change in measurements were calculated as 100 x [(value from MbS – value from MbT) / (value from MbT)].
The regression parameters (Nfast, Nslow, kfast and kslow) for deuterium uptake kinetics for MbT and MbS are given in Table 2. Though the Nfast and Nslow values are larger for MbS than MbT, differences in the Nslow values were greater than differences in the Nfast values. Specifically, the Nfast value is only 18% greater in MbS than in MbT, whereas the Nslow value is 75% greater in MbS than in MbT. This suggests that the smaller Nslow values in MbT may be due to the higher retention of Mb structure or protection of amide groups by excipients that are exposed to D2O in MbS. However, the detailed mechanisms are not clearly understood. The rate constants (kfast and kslow) for both formulations are very similar.
Deuterium uptake at the peptide level
Following pepsin digestion, a total of 52 peptides were identified. Six non-redundant fragments corresponding to 100% of the Mb sequence were used for the analysis reported here. Additional information can be obtained by using overlapping fragments, as reported by our group previously24. The percent deuterium uptake for each peptide was calculated and the results from 144 hr samples plotted (Figure 4A). HDX kinetics for the six peptic fragments showed biexponential behavior (Figure 4B), consistent with subpopulations of amide hydrogens undergoing “fast” and “slow” exchange.
Figure 4: ssHDX-MS for Mb at the peptide level: (A) Percent deuterium uptake for 6 non-redundant peptic fragments from Mb in formulations MbT (gray) and MbS (white) following 144 hr of HDX. (B) ssHDX kinetics for six non-redundant peptic fragments from Mb in formulations MbT (solid line) and MbS (dashed line). The time course of ssHDX was fitted to an equation for two phase exponential association using Graph Pad Prism software version 5 (n = 3, ± SD).
Regression parameters for the nonredundant peptides are presented in Figure 5. As the fitted rate constants for peptide fragments are not the average rate constant for individual amides, the observed rate constants for the peptic fragments cannot be linearly related to those for the intact protein. The Nfast values for most of the peptic fragments (except fragment 56-69) in formulations MbS were slightly greater than those in MbT (Figure 5A). Similarly, the kfast values generally showed little difference between formulations and in different regions of the Mb molecule (Figure 5B). However, the Nslow and kslow values for MbS are significantly greater in all fragments than for MbT (Figure 5C and 5D). The considerable increase in Nslow and kslow for MbS may reflect greater mobility of amide groups in the “slow” exchanging pools.
Figure 5: ssHDX kinetic parameters for Mb peptic peptides: Nfast (A), kfast (B), Nslow (C) and kslow (D) values obtained from nonlinear regression of ssHDX-MS kinetic data for six non-redundant peptic peptides from Mb in formulations MbT (gray) and MbS (white) (n = 3, ± SE).
Photolytic labeling at intact protein level
Mb irradiated in the presence of 20x excess pLeu formed multiple Mb-pLeu adducts, as detected by LC-MS (Figure 6A). The deconvoluted spectra for MbT irradiated for 40 min with 20x pLeu showed up to 3 labels with the addition of +115, +230 and +345 Da to the mass of unlabeled Mb. MbS irradiated similarly with 20x pLeu showed less pLeu uptake at the intact level, with up to 2 labeled populations detected by LC-MS.
Figure 6: ssPL-MS for intact Mb: (A) Deconvoluted mass spectra for MbT (solid line) and MbS (dashed line) labeled with 20x excess (5% w/w) pLeu. Deconvoluted mass spectrum of native Mb (Mb lyophilized and irradiated in the absence of pLeu) is shown as the dotted line. U denotes a population of protein that remains unlabeled after irradiation. Populations of protein carrying 1, 2 and 3 pLeu labels are represented as 1L, 2L and 3L respectively. (B) ssPL-MS kinetics for intact Mb in formulations MbT (closed circles) and MbS (open circles) as a function of pLeu concentration. All samples were irradiated for 40 min. Error bars are within the symbols. (C) ssPL-MS kinetics for intact Mb in formulations MbT (closed circles) and MbS (open circles) lyophilized and irradiated in the presence of 100x excess pLeu (20.7 % w/w) as a function of irradiation time. Error bars are within the symbols.
In kinetic studies, the percent of labeled protein increased exponentially for both MbT and MbS with increasing irradiation time (Figure 6B). MbS showed less pLeu uptake than MbT at every irradiation time. Both formulations appeared to reach a plateau at 40 min. Thus, a kinetic study can be useful to determine the duration of irradiation needed to obtain complete pLeu activation. Labeling kinetics were also studied as a function of pLeu concentration (Figure 6C). The percent of labeled protein increased with pLeu concentration for both MbT and MbS. However, at 20.7% w/w pLeu, MbT showed a decrease in pLeu uptake. This may be due to exclusion of pLeu from the surface of the protein at high pLeu concentration. Hence, a study with varying concentration of pLeu should be performed to select the appropriate pLeu concentration that allows for sufficient labeling across the protein surface without surface exclusion. In this study, 20x excess pLeu was selected for further peptide-level studies.
The overall decreased labeling observed for MbS suggests poor side-chain accessibility to the matrix containing pLeu. This is consistent with a conformational change in the presence of sorbitol that results in reduced labeling.
Photolytic labeling at the peptide level
Based on the intact protein labeling studies, 20x excess pLeu was selected to compare MbT and MbS at the peptide level. Labeled samples were digested with trypsin and analyzed by LC-MS. A total of 40 peptides corresponding to 100% of the Mb sequence were detected for MbT and MbS samples. In some cases, tryptic digestion may provide limited protein sequence coverage if Lys and/or Arg residues are heavily labeled. To improve sequence coverage, a mixture of trypsin and chymotrypsin can be used to digest the labeled protein.
Figure 7: ssPL-MS for Mb at peptide level: Cartoon representation of Mb labeled with 20x excess pLeu (5% w/w) in the presence of trehalose (A) and sorbitol (B). The labeled protein was digested with trypsin and labeled peptides were mapped on to the crystal structure of Mb (PDB ID 1WLA). The labeled and unlabeled regions are colored magenta and green, respectively.
ssPL-MS with trypsin digestion provides qualitative information about the peptides being labeled. Given the different labeled populations at the intact level, the promiscuous mechanism of pLeu labeling and differences in ionization efficiencies of labeled and unlabeled peptides, it is difficult to obtain quantitative metrics for ssPL-MS after digestion. However, the qualitative information can still provide insight into protein conformational changes at the peptide level. In this study, both MbT and MbS formulations showed pLeu uptake across most of the protein surface. When compared to MbS, peptide fragments 32-42, 134-139 and 146-153 from MbT showed pLeu labeling (Figure 7). This suggests that the side-chains of these amino acids are exposed to pLeu, as the helices in these regions are intact in the MbT matrix. In contrast, protection from pLeu labeling in the MbS matrix is consistent with structural perturbations in these regions.
Overall, the results from ssHDX-MS and ssPL-MS suggest that the methods can provide complementary high-resolution peptide-level information about backbone (ssHDX-MS) and side-chain (ssPL-MS) exposure and excipient effects in lyophilized protein formulations.
Several studies have suggested that the local environment in lyophilized samples affects protein degradation5,29,30. However, establishing a direct relationship between protein structure and stability in the solid state has not been feasible due to the lack of high-resolution analytical methods. The application of existing high resolution methods such as HDX and PL to lyophilized powders requires modification of solution protocols and careful data interpretation. HDX-MS and PL-MS have been successively adopted to monitor protein conformations in the solid-state. The results presented here and elsewhere27,28,31-33 have demonstrated the ability of these methods to monitor protein conformation with high resolution in the solid environment. Though the critical steps in data analysis do not vary from labeling in solution34-36, important considerations during experimental setup and data interpretation are required for solid-state chemical labeling.
Selection of the labeling reagent must be based on size and mechanism of labeling. The small size of deuterium allows the peptide backbone to be probed easily, whereas the relatively larger size of pLeu limits labeling to the side-chains. Both ssHDX and ssPL show no preference for any amino acid, so that labeling depends only on backbone and side-chain exposure to the matrix. To effectively probe protein conformations in solid-state, the external factors affecting the labeling process must be carefully controlled. The total amount and the spatial distribution of labeling agent in lyophilized solids is different from aqueous solutions.
In ssHDX, the amount of D2O in the solid matrix may affect the rate of protein unfolding (or partial unfolding), refolding, and deuterium exchange. This is not the case with solution HDX, in which the protein sample is normally diluted with an ample volume of D2O. Careful screening of the effects of hydration on the ssHDX rate can inform the selection of ideal RH conditions. To control the rate of moisture sorption and avoid collapse of the powder in formulations containing hygroscopic excipients (e.g. sucrose and trehalose), ssHDX may be carried out under refrigerated conditions (2-8 °C). Our previous study on hydration effects showed increased rate and extent of exchange with increase in moisture content, as expected. In much of our work, an intermediate RH of 43% at 5 °C has proven to be ideal to distinguish formulations in a reasonable time24. The reaction is usually carried out until a plateau is reached. This ensures that moisture sorption and diffusion into the solid do not control the HDX rate. The use of small solid sample sizes with pre-lyophilization volume of ≤2 ml also helps to ensure that D2O vapor sorption is essentially complete early in the exchange period. Though ssHDX-MS provides quantitative information on the conformation of protein in solid-state, there are certain conditions where interpretation of data cannot be entirely based on the ssHDX study alone. It is possible that the decreased deuterium uptake observed in a sample (when compared to control) may be due to the higher retention of protein structure or the significant amount of protein aggregates present in the sample. In such case, interpretation of ssHDX data requires results from other complementary methods. Peak broadening in deuterated mass spectra was observed for several Mb formulations27,28. This could be due to various factors like the presence of partially unfolded protein population, spatial heterogeneity in the sample, or the spatial gradients in the D2O concentration. However, these factors were not distinguished in ssHDX-MS and needs further investigation.
As ssPL-MS is relatively new when compared to other methods, continuous learning about its applications and limitations is required. In ssPL, the photo-cross-linker is lyophilized with the protein. The lack of moisture limits the mobility of components within the solid matrix, and the partial structural relaxation that may occur with moisture sorption in ssHDX is not a phenomenon in ssPL. This limits labeling in ssPL to the immediate vicinity of the photo-cross-linker. However, unlike HDX-MS, MS/MS analysis of the covalently labeled protein can provide residue-level structural information. Since ssPL labeling is covalent and irreversible, back exchange does not occur and samples can be prepared and analyzed without concern for loss of label. To facilitate diffusion of labeling agent and improve labeling efficiency in solid-matrix, ssPL may be performed with increasing % RH. pLeu uptake can also be improved by increasing the concentration of photoreactive agent. The molar ratio of protein to pLeu can be varied as desired. In general, a 100x molar excess of pLeu to protein will ensure adequate labeling. However, high pLeu concentration may result in loss of protein tertiary structure in the solid matrix. Hence, In addition to labeling kinetics and formulation composition, selection of pLeu concentration must also be based on maintaining protein structural integrity. As pLeu nonselectively labels X-H (where X = C, N, O) group, it is possible that excipients with similar labeling sites can greatly affect the level of protein labeling. The interference of excipients in the availability of pLeu for protein labeling is yet to be characterized. It is known that the carbene generated from diazirine activation is not residue-specific, however one study reports bias towards Asp and Glu36. While it is good to learn about residue-specific interactions, peptide-level information is also useful and can be used to design excipients to block regions with high matrix exposure in the solid state. ssPL-MS provides detailed qualitative information, however quantitative data needs to be obtained and robust metrics need to be developed to analyze formulation differences across a variety of lyophilized systems.
The use of a residue-specific label combined with MS/MS analysis can further enhance resolution to the amino-acid level. Labeling reagents such as 2,3-butanedione to label Arg, N-hydroxysuccinimide derivatives for Lys and N-alkylmaleimide derivatives for Cys can be used to precisely map molecular interactions in lyophilized powder. However these reagents are pH-dependent and the reactions may not be as well-controlled as photolytic labeling in solid-state. An alternate approach is to incorporate the photo-cross-linker into the protein sequence with the use of auxotrophic cell lines, site-directed mutagenesis or side chain derivatization.
Our previous ssHDX-MS and ssPL-MS studies have shown that labeling of protein depends on the nature and amount of excipients used24,27,28,31-33,37,38. ssHDX-MS of Mb co-lyophilized with guanidine hydrochloride (Gdn.HCl) showed greater deuterium uptake than Mb co-lyophilized with low-molecular-weight sugars32. In a separate ssPL-MS study, Mb co-lyophilized with Gdn.HCl showed greater protection from photolytic labeling than Mb with sucrose33. Further, quantitative measurements from ssHDX-MS have been highly correlated with the stability of protein during long-term storage28. These studies suggest that ssHDX or ssPL of protein reflects the extent of structural retention of the protein in lyophilized powder. We believe that the retention of secondary structure in lyophilized powders provides favorable environment for side chain labeling with pLeu and protection of amide hydrogen from deuterium exchange. However, detailed comparison of the informative content from these methods needs to be performed in the future. Though establishing the utility of ssHDX-MS and ssPL-MS as a formulation screening tool will ultimately require that it be applied to many proteins, results from our recent studies supports its wider adoption. With further development, these methods are expected to be widely useful for characterizing solid-state protein formulations in the biopharmaceutical industry.
The authors gratefully acknowledge financial support from NIH R01 GM085293 (PI: E. M. Topp) and from the College of Pharmacy at Purdue University.
Name | Company | Catalog Number | Comments |
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Equine myoglobin | Sigma-Aldrich | M0630-5G | |
D-(+)-Trehalose dihydrate | Sigma Aldrich | #T9531 | |
D-Sorbitol | Sigma Aldrich | #240850 | |
L-Photo-leucine | Thermo Scientific | #22610 | |
Potassium phosphate monobasic | Sigma-Aldrich | #P0662 | |
Potassium phosphate dibasic | Sigma-Aldrich | #P3786 | |
Deuterium Oxide | Cambridge Isotope Laboratories | #DLM-4-PK | Alternate (Cat. No.: 151882, Sigma-Aldrich) |
Immobilized pepsin | Applied Biosystems | #2-3132-00 | |
Trypsin | Promega | #V511A | Chymotrypsin (Cat. No.: #V1062, Promega) can be additionally used |
Water, Optima LC/MS grade | Fisher Chemical | #7732-18-5 | |
Acetonitrile | Sigma-Aldrich | #34998 | |
Formic acid | Thermo Scientific | #28905 | |
ESI-TOF Calibrant | Agilent Technologies | #G1969-85000 | Highly flammable liquid |
Protein microtrap | Michrom Bioresources | TR1/25108/03 | |
Peptide microtrap | Michrom Bioresources | TR1/25109/02 | |
Analytical column | Agilent Technologies | Zorbax 300SB-C18 | |
Freeze dryer | VirTis AdVantage Plus | ||
Stratalinker equipped with five 365 nm lamps | Stratagene Corp. | Stratalinker 2400 | |
HPLC | Agilent Technologies | 1200 series LC | Refrigerated LC system for HDX-MS |
ESI-qTOF MS | Agilent Technologies | 6520 qTOF | |
HDExaminer (HDX-MS data analysis software) | Sierra Analytics | http://www.massspec.com/HDExaminer.html |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved