A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a protocol to assess changes in neuromuscular function. Percutaneous electrical nerve stimulation is a non-invasive method that evokes muscular responses. Electrophysiological and mechanical properties of these responses permit the evaluation of neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels).
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.
Percutaneous electrical nerve stimulation is widely used to assess neuromuscular function1. The basic principle consists of inducing an electrical stimulus to a peripheral motor nerve to evoke a muscular contraction. Mechanical (torque measurement) and electrophysiological (electromyographic activity) responses are simultaneously recorded. Torque, recorded at the considered joint, is assessed using an ergometer. The electromyographic (EMG) signal recorded using surface electrodes has been demonstrated to represent the activity of the muscle2. This non-invasive method is not painful and more easily implemented than intramuscular recordings. Both monopolar and bipolar electrodes can be used. The monopolar electrode configuration has been shown to be more sensitive to changes in muscle activity3, which can be useful for small muscles. However, bipolar electrodes have been shown to be more effective in improving the signal-to-noise ratio4 and are most commonly used as a method of recording and quantifying motor unit activity. The methodology described below will focus on bipolar recordings. EMG activity is an indicator of the efficacy and integrity of the neuromuscular system. The use of percutaneous nerve stimulation offers further insights into neuromuscular function, i.e. changes at muscular, spinal, or supra-spinal level (Figure 1).
Figure 1: Overview of the neuromuscular measurements. STIM: nerve stimulation. EMG: Electromyography. VAL: Voluntary Activation Level. RMS: Root Mean Square. Mmax: Maximal M-wave amplitude.
At rest, the compound muscle action potential, also called M-wave, is the short-latency response observed after stimulus artefact, and represents excitable muscle mass by the direct activation of motor axons leading to the muscle (Figure 2, number 3). M-wave amplitude increases with intensity until reaching a plateau of its maximal value. This response, called Mmax, represents the synchronous summation of all motor units and/or muscle fiber action potentials recorded under the surface EMG electrodes5. The evolution of the peak-to-peak amplitude or wave area is used to identify alterations of neuromuscular transmission6. Changes in the mechanical responses associated with the M-wave, i.e. peak twitch torque/force, may be due to alterations in muscle excitability and/or within the muscle fibres7. The association of Mmax amplitude and peak twitch torque amplitude (Pt/M ratio) provides an index of electromechanical efficiency of the muscle8, i.e. mechanical response for a given electrical motor command.
Figure 2: Motor and reflexive pathways activated by nerve stimulation. Electrical stimulation of a mixed (motor/sensory) nerve (STIM) induces a depolarization of both motor axon and Ia afferent firing. Depolarization of Ia afferents towards the spinal cord activates an alpha motoneuron, which in turn evokes an H-reflex response (pathway 1+2+3). Depending upon the stimulus intensity, motor axon depolarization evokes a direct muscular response: M-wave (pathway 3). At maximal M-wave intensity, an antidromic current is also generated (3') and collides with reflex volley (2). This collision partially or totally cancels the H-reflex response.
The H-reflex is an electrophysiological response used to assess changes in the Ia-α motoneuron synapse9. This parameter can be assessed at rest or during voluntary contractions. H-reflex represents a variant of the stretch reflex (Figure 2, number 1-3). The H-reflex activates motor units monosynaptically recruited by Ia afferent pathways10,11, and can be subjected to peripheral and central influences12. The method of evoking a H-reflex is known to have a high intra-subject reliability to assess spinal excitability at rest13,14 and during isometric contractions15.
During a voluntary contraction, the magnitude of the voluntary neural drive can be assessed using the amplitude of the EMG signal, generally quantified using the Root Mean Square (RMS). RMSEMG is commonly used a means of quantifying the level of excitation of the motor system during voluntary contraction (Figure 1). Because of the intra- and inter-subject variability16, RMSEMG has to be normalized using the EMG recorded during a muscle-specific maximal voluntary contraction (RMSEMGmax). In addition, because changes in EMG signal may be due to alterations at peripheral level, normalization using a peripheral parameter such as M-wave is required to assess only the central component of EMG signal. This can be done by dividing the RMSEMG by the maximal amplitude or the RMSMmax of the M-wave. Normalization using RMSMmax (i.e. RMSEMG/RMSMmax) is the preferred method as it takes into consideration the possible change of the M-wave duration17.
Motor commands can also be evaluated by calculating the voluntary activation level (VAL). This method uses the twitch interpolation technique18 by superimposing an electrical stimulation at Mmax intensity during a maximal voluntary contraction. The extra-torque induced by stimulating the nerve is compared to a control twitch produced by identical nerve stimulation in a relaxed potentiated muscle19. To evaluate maximal VAL, the original twitch interpolation technique described by Merton18 involves a single stimulus interpolated over a voluntary contraction. Recently, the use of paired stimulation has become more popular because the evoked torque increments are larger, more readily detected, and less variable compared to single stimulation responses20. The VAL provides an index of the capacity of the central nervous system to maximally activate the working muscles21. Currently, VAL evaluated using the twitch interpolation technique is the most valuable method of assessing the level of muscle activation22. Furthermore, peak torque assessed using an ergometer is the most properly studied strength testing parameter applicable of use in research and clinical settings23.
Electrical nerve stimulation can be used in a variety of muscle groups (e.g. elbow flexors, wrist flexors, knee extensors, plantar flexors). However, nerve accessibility makes the technique difficult in some muscles groups. The plantar flexor muscles, especially triceps surae (soleus and gastrocnemii) muscles, are frequently investigated in the literature24. Indeed, these muscles are involved in locomotion, justifying their particular interest. The distance between stimulation site and recording electrodes allows the identification of the different evoked waves of the triceps surae muscles. The superficial part of the posterior tibial nerve in the popliteal fossa and the large number of spindles make it easier to record reflex responses compared to other muscles24. For these reasons, the currently presented reflex methodology focuses on the triceps surae group of muscles (soleus and gastrocnemius). The aim of this protocol is therefore to describe percutaneous nerve stimulation technique to investigate neuromuscular function in the triceps surae.
The experimental procedures outlined received Institutional ethical approval and are in accordance with the Declaration of Helsinki. Data were collected from a representative participant who was aware of the procedures and gave his written informed consent.
1. Instrument Preparation
Figure 3: Experimental setup. Classical experimental setup to record electromyographic (EMG) and torque signals.
2. Testing Procedures at Rest
3. Testing Procedures During Voluntary Contraction
4. Data Analysis
Figure 4: Explanation of electrophysiological and mechanical responses. (A) Measurement of peak-to-peak amplitude (mV), latency (ms) and area (mV.ms) of a typical M-wave. (B) Measurement of peak twitch torque (Nm), contraction time (ms) and half-relaxation time (msec) of a twitch. Please click here to view a larger version of this figure.
Figure 5: Measurement of superimposed and potentiated doublet on mechanical signal. To record the superimposed peak torque (Pts), stimulation doublet is evoked during the plateau of isometric maximal voluntary contraction (MVC). To record potentiated peak torque (PtP), stimulation doublet is evoked at rest after the offset of MVC.
Increasing stimulus intensity leads to a different evolution of response amplitudes between H- and M-waves. At rest, the H-reflex reaches a maximum value before being totally absent from EMG signal, while M wave progressively increases until reaching a plateau at maximal intensity (see Figure 4 for a graphical depiction of the M-wave and Figure 6 for the evolution of M-waves and H-reflex with intensity). For the soleus muscle, the latency between the stimulus onset and M-wave is about 10...
Percutaneous nerve stimulation enables the quantification of numerous characteristics of the neuromuscular system not only to understand the fundamental control of neuromotor function in healthy humans, but also to be able to analyze acute or chronic adaptations through fatigue or training17. This is very beneficial especially for fatiguing protocols, where measurements must be performed as soon as possible after exercise end to avoid the effects of rapid recovery42.
Alth...
The authors have nothing to disclose.
The authors have no acknowledgements.
Name | Company | Catalog Number | Comments |
Biodex dynamometer | Biodex Medical System Inc., New York, USA | www.biodex.com | |
MP150 Data Acquisition System | Biopac Systems Inc., Goleta, USA | ||
Acknowledge 4.1.0 software | Biopac Systems Inc., Goleta, USA | www.biopac.com | |
DS7A constant current high voltage stimulator | Digitimer, Hertfordshire, UK | www.digitimer.com | |
Silver chloride surface electrodes | Control Graphique Medical, Brie-Comte-Robert, France | ||
Computer | |||
1 Cable for connecting the Biodex to the MP150 | |||
1 Cable for connecting the Digitimer to the MP150 | |||
1 Cable for connecting the MP150 to the computer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved