A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
In this protocol, we describe a novel BrdU-ChIP-Slot-Western technique to examine proteins and histone modifications associated with newly synthesized or nascent DNA.
Histone deacetylases 1 and 2 (HDAC1,2) localize to the sites of DNA replication. In the previous study, using a selective inhibitor and a genetic knockdown system, we showed novel functions for HDAC1,2 in replication fork progression and nascent chromatin maintenance in mammalian cells. Additionally, we used a BrdU-ChIP-Slot-Western technique that combines chromatin immunoprecipitation (ChIP) of bromo-deoxyuridine (BrdU)-labeled DNA with slot blot and Western analyses to quantitatively measure proteins or histone modification associated with nascent DNA.
Actively dividing cells were treated with HDAC1,2 selective inhibitor or transfected with siRNAs against Hdac1 and Hdac2 and then newly synthesized DNA was labeled with the thymidine analog bromodeoxyuridine (BrdU). The BrdU labeling was done at a time point when there was no significant cell cycle arrest or apoptosis due to the loss of HDAC1,2 functions. Following labeling of cells with BrdU, chromatin immunoprecipitation (ChIP) of histone acetylation marks or the chromatin-remodeler was performed with specific antibodies. BrdU-labeled input DNA and the immunoprecipitated (or ChIPed) DNA was then spotted onto a membrane using the slot blot technique and immobilized using UV. The amount of nascent DNA in each slot was then quantitatively assessed using Western analysis with an anti-BrdU antibody. The effect of loss of HDAC1,2 functions on the levels of newly synthesized DNA-associated histone acetylation marks and chromatin remodeler was then determined by normalizing the BrdU-ChIP signal obtained from the treated samples to the control samples.
Defective DNA repair and/or DNA replication are a major cause of genome instability, which can trigger cell death. A single unrepaired double strand break is sufficient to cause cell death1. Chromatin organization is transiently altered during both replication and repair2,3, and failure to maintain epigenetic information during these processes will result in a threat to genome integrity. Loss of HDAC3 or HDAC1,2 function impedes S-phase progression, DNA replication and repair leading to genotoxic stress (DNA damage) and cell death4-9. It is therefore a practical strategy to use selective HDAC inhibitors to disrupt replication, repair and chromatin in cancer cells and cause DNA damage, which in turn can stop growth and induce cell death selectively in rapidly growing cancer cells.
During DNA replication, chromatin is rapidly disassembled and then reassembled following DNA duplication. Newly synthesized histone H4 is acetylated at K5 and K12 residues (H4K5K12ac) and following deposition onto chromatin, they are rapidly deacetylated by histone deacetylases (HDACs)10,11. Failure of cells to maintain nascent chromatin integrity by histone deacetylation can lead to fork collapse, which in turn can result in DNA damage and cell death. We recently showed that selective inhibition of HDAC1,2 increases histone acetylation (H4K5ac, H4K12ac and H4K16ac) and inhibits SMARCA5 chromatin remodeler activity on nascent chromatin, which correlates with reduced replication fork progression, increased fork collapse and increased replication stress-induced DNA damage6. Thus, HDAC inhibitor treatment can alter nascent chromatin structure to trigger DNA damage and death very quickly in cancer cells, as these cells cycle rapidly and pass many times through the S-phase. It is therefore important to understand how HDACs function to regulate histone acetylation and protein binding to maintain DNA replication in mammalian cells.
To quantitatively measure the amount of histone acetylation and SMARCA5 chromatin remodeler associated with nascent DNA during DNA replication, we devised a modified ChIP assay called the BrdU-ChIP-Slot-Western technique. Following chromatin immunoprecipitation (ChIP) of a desired protein or histone modification, the amount of nascent DNA (labeled using thymidine analog, BrdU) in the ChIP sample can be detected using western analysis of BrdU-labeled ChIP DNA transferred onto a membrane using a Slot Blot apparatus. Using this technique, we showed that H4K16ac (a mark involved in chromatin packaging) and the ISWI family member SMARCA5 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin) chromatin remodeler are associated with nascent DNA in S-phase cells6. We also found that the nascent H4K16ac mark is deacetylated by HDAC1,2 during DNA replication6. H4K16ac inhibits chromatin remodeler activity of the ISWI family member SMARCA512. Hence, using the BrdU-CHIP-Slot-Western technique, we could connect the functions for HDAC1,2 in regulating chromatin remodeling during DNA replication. Hence, the BrdU-ChIP-Slot-Western Blot technique is a powerful approach to quantitatively measure the association and dissociation dynamics of proteins or their post-translational modifications that are bound to nascent DNA.
Access restricted. Please log in or start a trial to view this content.
1. Chromatin immunoprecipitation (ChIP) following BrdU Labeling
2. Slot Blot Analysis of ChIP DNA
Access restricted. Please log in or start a trial to view this content.
To determine the specificity of HDAC1,2-selective inhibitors, Hdac1,2FL/FL and Hdac3FL/FL fibrosarcoma cells were used. Adenovirus-containing Cre recombinase (Ad-Cre) was used to delete Hdac1,2 and Hdac3 in these cells. Following Ad-Cre infection of Hdac1,2FL/FL cells, a robust increase in H4K5ac was observed. Treatment of Hdac1,2 knockout cells with 233 or 898 did not result in...
Access restricted. Please log in or start a trial to view this content.
The protocol described in this manuscript is a relatively quick method to demonstrate the presence of proteins or their post-translationally modified forms on newly replicated or nascent DNA. Additionally, this technique permits one to measure the association-dissociation kinetics of a protein or its modified form with nascent DNA. This technique is complementary to the elegant iPOND technology13. In the iPOND technology, newly synthesized DNA is labeled with ethyl deoxyuridine (EdU). A biotin conjugate is the...
Access restricted. Please log in or start a trial to view this content.
I have no competing financial interests.
The work in this manuscript was supported by funds from Dept. of Radiation Oncology and Huntsman Cancer Institute and the National Institute of Health grant (R01-CA188520) to SB. I thank Danielle Johnson and Steven Bennett in my lab for demonstrating the protocol and explaining its benefits. I am grateful to Dr. Mahesh Chandrasekharan (Huntsman Cancer Institute) for critical comments on the manuscript.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Anti-BrdU (westerns) | BD Biosciences | B555627 | |
Anti-SMARCA5 | Abcam | ab3749 | |
Anti-H4K16ac | Active Motif | 39167 | |
Zeta-Probe GT Membrane | Bio-Rad | 162-0197 | |
Formaldehyde | Fisher | BP531-500 | |
Protein A agarose | Millipore | 16-156 | |
Rnase A | Qiagen | 19101 | |
Proteinase K | Sigma | P4850 | |
PCR Purification Kit | Qiagen | 28106 | |
Glycine | Sigma | G7403 | |
Protease inhibitor cocktail | Roche | 11836170001 | |
BrdU | Sigma | B9285 | |
Rabbit IgG | Millipore | 12-370 | |
HEPES | Sigma | H3375 | |
NaCl | Sigma | S-3014 | |
Triton-X-100 | Sigma | 93443 | |
NP40 | USB Corporation | 19628 | |
Sodium deoxycholate | Sigma | D6750 | |
Sodium bicarbonate | Sigma | S-4019 | |
Ethanol | Decon Laboratories | 04-355-222 | |
DEPC-treated water | Sigma | 95284 | |
Tris | Fisher | BP-152-5 | |
EDTA | Invitrogen | 15575-020 | |
SDS | Ambion | AM9820 | |
Sodium hydroxide | Mallinckrodt GenAR | MAL7772-06 | |
20x SSC | Life Technologies | 15557-036 | |
Non-fat dry milk | Lab Scientific Inc | M0841 | |
ECL | Thermo Fisher | 80196 | |
X-ray film | Genesee Sci | 30-101 | |
Developer | Konica Minolta | SRX-101A | |
UV Crosslinker | Stratagene | XLE-1000 | |
Sonicator | Branson Sonifier Digital Ultrasonic Cell Disruptor | Model: 450 | |
Centrifuge | Eppendorf | Model: 5810R | |
Water bath | Fisher Scientific Isotemp | Model: 2322 | |
NanoDrop 1000 spectrophotometer | ThermoScientific | Model: 1000 | |
Slot Blot apparatus | Schleicher and Schuell Minifold II | 44-27570 | |
Tissue Culture Incubator | Thermo Scientific | Series II 3110 Water-Jacketed CO2 Incubators |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved