A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
After puncturing the aorta through the inferior vena cava (IVC) to create an aorto-caval fistula in the mouse, solution containing a drug is infused into the IVC via the same needle, followed by incubation. This method enables more robust drug delivery to the venous endothelium compared to the external route.
Delivery of therapeutic agents to enhance arteriovenous fistula (AVF) maturation can be administered either via intraluminal or external routes. The simple murine AVF model was combined with intraluminal administration of drug solution to the venous endothelium at the same time as fistula creation. Technical aspects of this model are discussed. Under general anesthesia, an abdominal incision is made and the aorta and inferior vena cava (IVC) are exposed. The infra-renal aorta and IVC are dissected for clamping. After proximal and distal clamping, the puncture site is exposed and a 25 G needle is used to puncture both walls of the aorta and into the IVC. Immediately after the puncture, a reporter gene-expressing viral vector was infused in the IVC via the same needle, followed by 15 min of incubation. The intraluminal administration method enabled more robust viral gene delivery to the venous endothelium compared to administration by the external route. This novel method of delivery will facilitate studies that explore the role of the endothelium in AVF maturation and enable intraluminal drug delivery at the time of surgical operation.
The murine aortovenous fistula (AVF) puncture model between the aorta and the inferior vena cava (IVC) is now an established technique.1 In this model, both walls of the infra-renal aorta are punctured with a 25 G needle, exiting into the adjoining infra-renal vena cava; the anterior aortic entrance hole is repaired with simple compression, and does not require suture repair. Serial follow-up examination by high-resolution Doppler ultrasound and histological analysis shows the AVF to have a maturation phase and then a failing phase, recapitulating the known pathophysiology of human AVF.2
To explore mechanisms that modulate AVF maturation, improved methods for delivery of therapeutic agents to the maturing AVF endothelium are needed. Delivery of therapeutic agents to vessels can be either via endovascular delivery to the lumen, or via external delivery to the adventitia. One example of external delivery is the commonly used adventitial application of Pluronic gel. This copolymer is thermo-reversible and transformed from liquid to solid gel when warmed to body temperature. Prior studies have shown sustained drug delivery is achieved when drug mixed in pluronic gel is applied topically in vivo.3,4 Adventitial application of viral vectors or siRNA with Pluronic gel has been reported to be effective as a perivascular delivery system.5,6 We have also reported that treatment of explanted human saphenous veins with adventitial stimulation by peptides resulted in phosphorylation of endothelial receptor proteins.7
On the other hand, investigators have also used intraluminal delivery of both viral and nonviral vectors in canine8-10 and rabbit11,12 models of vein grafts. In these reports, gene transfer was performed ex vivo after vein harvest. Eslami et al. reported endovascular viral gene delivery to carotid veins in situ without creating a bypass.13 Gloverman et al. reported intraluminal and adventitial delivery of naked DNA in rat femoral artery-superficial epigastric vein fistulae.14 The Mayo group reported adventitial drug delivery in mouse carotid artery-jugular vein fistulae.15,16 However, these previously reported models required a sutured anastomosis to create the AVF. In this report, intraluminal drug delivery with simultaneous AVF creation in mice is described, using a suture-less model of AVF creation. By using this modified murine AVF model a simple method for intraluminal drug delivery to the venous limb of the fistula can be performed.
Approval by the appropriate Institutional Animal Care and Use Committee is obtained.
1. Anesthesia and Pre-operative Procedures
2. Operative Procedures
3. Post-operative Procedures
Figure 1. (A) Operative Photo Showing Intraluminal Delivery during AVF Surgery. Clamp the proximal and distal aorta, as well as the IVC by applying microsurgery clips. Puncture the aorta through into the IVC using a 25 G needle with attached syringe containing drug solution. (B) A Higher Power Picture (4X magnification) of the Punctured IVC before Infusion. The needle tip is obscured by dark colored venous blood. Yellow arrowheads denote the wall-to-wall diameter of the IVC. (C) A Higher Power Picture (4X magnification) of the Punctured IVC after Infusion. The needle tip (black arrow) can be seen through the gently distended and thin IVC wall (yellow arrowheads) as the transparent drug solution displaces the venous blood.
In a series of 33 mice, survival on the first post-operative day was 97.0%; AVF patency, as determined by ultrasound, was 84.9%.
Gene transduction efficiency of this endovascular delivery route with the traditional external route was compared. For intraluminal delivery (ILD), immediately after the puncture, 200 µl of Adenovirus-GFP (Ad-GFP) vector solution (1 × 109 PFU/ml) was infused into the IVC via t...
This modification of the murine AVF model incorporates intraluminal drug delivery to the venous endothelium at the time of AVF creation. An AVF was created by puncturing the infra-renal aorta with a 25 G needle and extending the puncture through the opposite aortic wall into the IVC, followed by injection of drug solution through the same needle. The solution is maintained intra-caval, i.e., in the venous limb of AVF, until de-clamping. What distinguishes this model from other murine AVF models17-19
The authors have nothing to disclose.
This work was supported in part by the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Program Merit Review Award I01-BX002336, the National Institute of Health grant R56-HL095498, as well as with the resources and the use of facilities at the VA Connecticut Healthcare System, West Haven, CT.
Name | Company | Catalog Number | Comments |
Pluronic F-127 | Sigma-Aldrich | P2443-250G | Used as 30% solution in d-water |
GFP antibody | NOVUS BIOLOGICALS INC | NB100-1770 | |
Ad-CMV-GFP | VECTOR BIOLABS | 1060 | |
0.9% Sodium Chloride Irrigation, USP | Baxter | 2F7122 | |
BD PrecisionGlide Needle 25 G x 5/8 | BD | 305122 | |
BD 1 ml Syringe Tuberculin Slip Tip | BD | 309659 | |
Scalpel | Surgical Design Inc | 22079707 | |
6-0 ETHILON P-1 11 mm 3/8c Reverse Cutting | ETHICON INC | 697G | |
Vevo 770 ultrasound machine | Visualsonics | 20 - 60 Mhz scan head; RMV-704 | |
Vascular clamp | Roboz Surgical Instrument Co. | RS-5424 | |
Clamp applying forceps | Roboz Surgical Instrument Co. | RS-5410 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved