A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Fatigue is a common, undertreated and frequently poorly-understood symptom in many diseases and disorders. New preclinical assays of fatigue may help to improve current understanding and future treatment of fatigue. To that end, the current protocol provides a novel means of measuring fatigue-like behavior in the mouse.
Fatigue is a prominent symptom in many diseases and disorders and reduces quality of life for many people. The lack of clear pathogenesis and failure of current interventions to adequately treat fatigue in all patients leaves a need for new treatment options. Despite the therapeutic need and importance of preclinical research in helping identify promising novel treatments, few preclinical assays of fatigue are available. Moreover, the most common preclinical assay used to assess fatigue-like behavior, voluntary wheel running, is not suitable for use with some strains of mice, may not be sensitive to drugs that reduce fatigue, and has relatively low throughput. The current protocol describes a novel, non-voluntary preclinical assay of fatigue-like behavior, the treadmill fatigue test, and provides evidence of its efficacy in detecting fatigue-like behavior in mice treated with a chemotherapy drug known to cause fatigue in humans and fatigue-like behavior in animals. This assay may be a beneficial alternative to wheel running, as fatigue-like behavior and potential interventions can be assessed in a greater number of mice over a shorter time frame, thus permitting faster discovery of new therapeutic options.
Fatigue affects a wide range of people, can markedly reduce quality of life, and frequently has an unclear or unknown pathogenesis. Cancer-related fatigue (CRF), for example, is experienced by the majority of cancer patients undergoing treatment and can persist long after cancer treatment has been completed and in the absence of detectable cancer1. Moreover, fatigue is also a prominent symptom in numerous other diseases and disorders, including chronic fatigue syndrome, depression, diabetes, and fibromyalgia. Fortunately, there are non-pharmacological interventions that are capable of helping some people experiencing fatigue (e.g., exercise can reduce CRF for some breast cancer patients2,3), but many individuals still lack effective treatment. Furthermore, existing drug treatments for CRF have not been found to be broadly, if at all, efficacious4-7.
Despite the therapeutic need and lack of drug treatment options, preclinical assays of fatigue to aid in the discovery and development of novel fatigue treatments are lacking, especially in animal models. One of the only preclinical assays of fatigue for rodent studies is voluntary wheel running activity (VWRA)9-15, in which mice or other rodents are given free access to a running wheel and their daily running activity is recorded. In many studies, VWRA is the only measure of fatigue-like behavior, with fatigue-like behavior defined (in either VWRA or the current protocol) as a decrease in the measured physical activity in the experimental group. Although VWRA can provide a useful longitudinal measure of fatigue-like behavior, it is a relatively low-throughput assay, running varies considerably between inbred mouse strains16, and it requires subjects to be individually housed, which may cause changes in behavior and test performance17-19. Other assays, such as home cage behavioral monitoring and analysis, can also provide continuous data collection and some systems may allow for subjects to be housed in pairs20. These assays have utility, but may be less sensitive as a means of detecting fatigue-like behavior and, like wheel running, are also low-throughput.
In contrast to VWRA, mouse treadmill tests do not rely upon voluntary activity and can be completed in a short time frame, allowing for higher throughput. In comparison to VWRA, these tests employ external motivators. Specifically, there is usually an electrified metal grid located to the rear of the moving belt to provide mice with an electric shock should they cease to run. In addition to this shock grid, mice may be motivated to run on the treadmill via several other methods, including prodding, poking, or touching them with a hand, brush, or other tool and directing short puffs of air at them. Instead of fatigue, mouse treadmill tests are often used to measure aerobic and/or anaerobic exercise capacity21-25. Mice are motivated to run until they are incapable of or unwilling to continue running on the treadmill as a means of escaping further electric shocks. Testing then ends when mice meet the criterion for exhaustion. In these protocols, to ensure that mice reach true physiologic exhaustion, the criterion for exhaustion is often defined as spending five continuous seconds laying on top of the shock grid and failing to continue running in the face of repeated aversive stimuli. Thus, fatigue-like behavior may be masked in typical treadmill tests due to the strong aversive nature of the external motivation and criterion for ending the test. Interestingly, and in contrast to many other studies using rodent treadmills, a recent publication describes another version of a treadmill fatigue test, which was used as part of an examination of the effects of social stress in mice26. Although the method used by this group markedly differed from the current protocol (i.e., they employed a single-lane treadmill and required 10 sec of electric shock as the criterion for ending their test), their study highlights the utility of and interest in developing a quick, simple fatigue test using the mouse treadmill.
Fatigue is likely to be detectable by means other than wheel running and alterations in routine behaviors. CRF makes patients feel exhausted by a lesser amount of muscle fatigue, as determined by electromyographic analysis, than people without CRF27. Additionally, reduced motivation has been noted in and is measured by several scales measuring human fatigue28,29. Thus, a useful preclinical assay of fatigue-like behavior should distinguish between healthy and fatigued mice on the basis of a measure other than physiological capability and should not obscure decreases in motivation. To achieve that end while avoiding limitations of VWRA and other assays, the current method was developed by adapting the mouse treadmill test. This method uses a shock grid as the sole external motivator to make mice run on the treadmill. Mice quickly learn that the grid provides an aversive stimulus and will promptly move away from it when placed on the treadmill and maintain some distance from it when running.
When mice fatigue, they spend progressively more time toward the back of the treadmill instead of maintaining speed toward the front end. Therefore, the criterion for test completion in this protocol is spending five continuous seconds in the designated fatigue zone (i.e., the rear of the treadmill, ranging from approximately one body length from the shock grid to, and including, the shock grid). This takes advantage of the aversive nature of the grid without requiring mice to receive many or any actual shocks after training. By allowing mice to complete testing using the current criterion rather than exhaustion (as defined above), this method provides a means of using the treadmill to measure fatigue-like behavior rather than its maximal (or near-maximal) physiological capability. Thus, this method can provide a simple, high-throughput assay of fatigue-like behavior in mice and can serve either as an independent or complementary measure to other assays of fatigue-like behavior.
This procedure was approved by the National Institute of Diabetes and Digestive and Kidney Diseases Animal Care and Use Committee.
1. Preparation
2. Training Mice to Use the Treadmill
NOTE: Training is necessary to ensure that mice are familiar with the treadmill and task and can perform appropriately when tested. If the majority of mice being trained are receiving frequent shocks or otherwise performing poorly during any training session, additional training sessions should be performed. On the first day, most mice will be shocked several times. By the second day of training, mice should be rarely making contact with the grid. If a mouse displays consistently poor training performance, it should be removed from the study. For female C57BL/6NCr mice, this is a rare occurrence (less than 1% have been removed from studies due to poor training performance), but it should be noted that other strains may perform differently during training.
3. Treadmill Fatigue Test
NOTE: In this test, fatigue-like behavior is defined as spending 5 consecutive seconds in the "fatigue zone". The fatigue zone is defined as the region encompassing the portion of the treadmill belt within approximately 1 body length of the shock grid as well as the grid, itself. Prior to testing, ensure that the point delineating this zone is clear to the experimenter, such as by applying a mark to the top or side of the treadmill lanes.
This protocol allows fatigue-like behavior to be measured in mice using a treadmill. The data presented in this section was obtained by training and testing 3 separate groups of mice using the current protocol (excluding Figure 1A and 1C). To induce fatigue, 5-fluorouracil (5-FU), a cytotoxic chemotherapy drug known to cause fatigue in humans30 and fatigue-like behavior in mice10,13, was administered. All data presented are from...
The current protocol describes how to use a mouse treadmill to measure fatigue-like behavior. This method has several advantages over VWRA, a common preclinical assay of fatigue-like behavior. VWRA requires that mice choose to interact with the test apparatus. As a result, some inbred strains of mice rarely interact with the wheel16 and run so little that it may be difficult or impossible to identify a fatigue-induced decrease in activity. In contrast, the treadmill fatigue test eliminates that choice and ther...
The authors have nothing to disclose.
This research was supported by the Intramural Research Program of the NIH, The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Grant 1Z01 DK011006. We wish to thank Michele Allen for providing technical assistance, Eleni Solomos for editorial assistance, and the NIH veterinary and animal care staff for providing care for the mice used in developing this method.
Name | Company | Catalog Number | Comments |
Exer 3/6 Animal Treadmill | Columbus Instruments | 1050-RM Exer-3/6 | |
Stopwatch | Daigger | EF24490M | |
Wire brush | Fisher Scientific | 03-572-5 | |
Compressed air | Dust-Off | FALDSXLPW | |
Absorbent pads | Daigger | EF2175CX | |
Butcher paper | Newell Paper Company | 4620510 | |
Alcohol (70%) | Fisher Scientific | BP82011 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved