A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the application of combined near-infrared fluorescent (NIRF) imaging and micro-computed tomography (microCT) for visualizing cerebral thromboemboli. This technique allows the quantification of thrombus burden and evolution. The NIRF imaging technique visualizes fluorescently labeled thrombus in excised brain, while the microCT technique visualizes thrombus inside living animals using gold-nanoparticles.

Abstract

Direct thrombus imaging visualizes the root cause of thromboembolic infarction. Being able to image thrombus directly allows far better investigation of stroke than relying on indirect measurements, and will be a potent and robust vascular research tool. We use an optical imaging approach that labels thrombi with a molecular imaging thrombus marker — a Cy5.5 near-infrared fluorescent (NIRF) probe that is covalently linked to the fibrin strands of the thrombus by the fibrin-crosslinking enzymatic action of activated coagulation factor XIIIa during the process of clot maturation. A micro-computed tomography (microCT)-based approach uses thrombus-seeking gold nanoparticles (AuNPs) functionalized to target the major component of the clot: fibrin. This paper describes a detailed protocol for the combined in vivo microCT and ex vivo NIRF imaging of thromboemboli in a mouse model of embolic stroke. We show that in vivo microCT and fibrin-targeted glycol-chitosan AuNPs (fib-GC-AuNPs) can be used for visualizing both in situ thrombi and cerebral embolic thrombi. We also describe the use of in vivo microCT-based direct thrombus imaging to serially monitor the therapeutic effects of tissue plasminogen activator-mediated thrombolysis. After the last imaging session, we demonstrate by ex vivo NIRF imaging the extent and the distribution of residual thromboemboli in the brain. Finally, we describe quantitative image analyses of microCT and NIRF imaging data. The combined technique of direct thrombus imaging allows two independent methods of thrombus visualization to be compared: the area of thrombus-related fluorescent signal on ex vivo NIRF imaging vs. the volume of hyperdense microCT thrombi in vivo.

Introduction

One in 6 people will have a stroke at some point in their lifetime. Ischemic stroke is by far the most common stroke type, and accounts for about 80 percent of all stroke cases. Because thromboemboli cause the majority of these ischemic strokes, there is an increasing interest in direct thrombus imaging.

It was estimated that about 2 million brain cells die during every minute of middle cerebral artery occlusion1, leading to the slogan "Time is Brain". Computed tomography (CT) studies can be done rapidly, and are widely available; for this reason, CT remains the imaging of choice for the initial diagnosis and treatment of....

Protocol

All animal procedures demonstrated in this protocol have been reviewed and approved by the Dongguk University Ilsan Hospital Animal Care and Use Committee and conducted in accordance with the principles and procedures outlined in the NIH Guide for the Care and Use of Animals.

1. Preparation of Exogenously Formed Clot Labeled with Fluorescence Marker (Figure 1)

  1. Anesthetize a mouse in an induction chamber using 3% isoflurane mixed with 30% oxygen (1.5 L/min 100% oxygen). Ensure adequate depth of anesthesia by observing muscle tone and confirming the absence of the toe pinch reflex.
  2. Place the animal on a sterile drape in prone position, and k....

Results

Baseline microCT images, obtained in vivo after administering fib-GC-AuNP (10 mg/ml, 300 µl) at 1 hr after embolic stroke, clearly visualized cerebral thrombus in the MCA – ACA bifurcation area of the distal internal carotid artery (Figure 6). Follow-up microCT imaging showed no change in the COW thrombus with saline treatment. However, treatment with tPA showed a gradual dissolution of the COW thrombus (blue arrowheads in Figure 6). T.......

Discussion

We demonstrated the use of two complementary molecular imaging techniques for direct thrombus imaging in experimental models of embolic stroke: a fibrin targeted gold nanoparticle (fib-GC-AuNP) for in vivo microCT-based imaging, and a FXIIIa targeted optical imaging probe for ex vivo fluorescent imaging.

After intravenous administration of fib-GC-AuNPs, thrombi became visible to CT as dense structures, caused by the particles becoming entrapped in the thrombi by the action of.......

Disclosures

D-E.K., J-Y.K, C-H.A, and K.K. are the patent holders of the fibrin-targeted gold nanoparticle (10-1474063-0000, Korean Intellectual Property Office). The remaining authors have nothing to disclose.

Acknowledgements

This work was supported by the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare (HI12C1847, HI12C0066), the Bio & Medical Technology Development Program (2010-0019862) and Global Research Lab (GRL) program (NRF-2015K1A1A2028228) of the National Research Foundation, funded by the Korean government.

....

Materials

NameCompanyCatalog NumberComments
Machines
microCTNanoFocusRay, JeonJu, KoreaNFR Polaris-G90
NIRF imaging systemRoper-scientific,Tucson, AZcoolsnap-Ez
Laser Doppler flowmeterPerimed, Stockholm, SwedenPeriFlux System 5000
Surgical microscopeLeica Microsystems, Seoul, KoreaEZ4HD
Inhalation anesthesia machinePerkinElmer, Massachusetts, USAXGI-8
Software
NFR controlNanoFocusRay, JeonJu, KoreaNFR Polaris-G90microCT control software
LucionInfinitt, Seoul, KoreaLucion3D render imaging software
Lab chart 7ADInstruments, Colorado, USALab chart 7rCBF
Image J softwareWanye Rasband, NIH, USA1.49dimaging analysis
Devices/Instruments
Infusion pumpHarvard, Massachusetts, USApump 22(55-2226)
Homeothermic blanketPanlab, Barcelona, SpainHB101
Pocket cauteryDaejong, Seoul, KoreaDJE-39
Brain matriceTed pella, CA, USA15003coronal section
PE-50 tubingNatsume, Tokyo, JapanSP-45(PE-50)I.D. 0.58 mm O.D. 0.96 mm
PE-10 tubingNatsume, Tokyo, JapanSP-10(PE-10)I.D. 0.28mm O.D. 0.61 mm
30 gauge needlesungshim-medical, Seoul, Korea
SyringeCPL-medical, Ansan, Korea1 & 3 cc
GauzePanamedic, Cheonan, Korea
TapeScotch, Seoul, Korea3M-810
Micro forcepsFine Science Tools, Vancouver, Canada 11253-27Dumont #L5
Micro scissorFine Science Tools, Vancouver, Canada15000-03Vannas spring
ScissorFine Science Tools, Vancouver, Canada14084-088.5 cm
Black silk sutureAilee, Busan, KoreaSK6071, SK7286-0 and 7-0
Reagents
meloxicamYuhan, Seoul, Korea
vet ointmentNovartis, Basel, Swiss
10% Povidone-iodine (betadine)Firson, Cheon-an, Korea
FeCl3Sigma, Missouri, United States157740-5G
TTCAmresco, Ohio, USA0765-100g
IsofluraneHana-Pham, Gyeonggi, KoreaIfran100 mL
PBSWelgene, Daegu, KoreaLB001-02500 mL
Gold nanoparticlesSynthesis
C15 optical agentSynthesis
Tissue plasminogen activatorBoehringer Ingelheim, Biberach, GermanyrtPA(actilyse)20 mg
Normal salineDaihan Pham, Seoul, Korea48N3AF320 mL

References

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cerebral ThromboembolismNear infrared Fluorescent ImagingMicro computed TomographyGold NanoparticlesThrombolytic AgentsTissue Plasminogen ActivatorHemostasisThrombosisIn VivoEx VivoMicro CTFluorescent Thrombus ImagingCardiac PunctureFibrin Cross linkingPolyethylene TubePBSPE10 TubePE50 TubeLaser Doppler Flow Meter

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved