A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This study presents an innovative running wheel-based animal mobility system to quantify an effective exercise activity in rats. A rat-friendly testbed is built, using a predefined adaptive acceleration curve, and a high correlation between the effective exercise rate and the infarct volume suggests the protocol's potential for stroke prevention experiments.
This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.
Strokes exist continuously as a financial burden to countries globally, leaving countless patients physically and mentally disabled1,2. There is clinical evidence to suggest that regular exercise can improve nerve regeneration and strengthen neural connections3,4, and it is also shown that exercise can decrease the risk of suffering ischemic strokes5. With either a treadmill or a running wheel as an exercise training system, rodents, such as rats, serve as a proxy for humans for testing the effectiveness of exercises in a vast majority of clinical experiments6-8. A training system normally involves training a rat for a certain period of time, during which a rat runs at a certain speed. Therefore, the training intensity is generally calculated according to the exercise speed and duration6-8. The same approach is applied to estimate the amount of exercise required for neurophysiological protection. However, the experimental exercises are sometimes found to be ineffective, such as when a rat stumbles, falls, or grabs the rails once they are unable to catch up with the running wheel speed9-11. Needless to say, incidents of ineffective exercise significantly reduce the exercise benefit. Even though there is no any universally accepted approach currently to quantify the effective exercises for reducing brain damage, the level of effective exercises still stands as an objective appraisal for clinical researchers to illustrate the benefits of exercise in the discipline of neurophysiology.
There exist a number of limitations on commercially available animal mobility systems used in today's brain damage reduction experiments12. In a treadmill case, rats are forced to run by means of electric shocks, inducing tremendous psychological stress on the animals and thereby interference in the final neurophysiological test results8,13,14. Running wheels can be categorized into two types, namely voluntary and forced. Voluntary running wheels allow rats to run naturally, creating excessive variability due of the differences in the rats' physical traits and abilities15, while motorized running wheels (MRWs) employ a motor to turn the wheel, forcing rats to run. Despite also being a form of forced training, MRWs imposes less psychological stress on rats than treadmills13,16,17. However, experiments using MRWs have reported that rats sometimes interrupt the exercise by grabbing the rails on the wheel track and refusing to run at speeds exceeding 20 m/min9. These examples show that animal mobility systems currently available have an inherent disadvantage that inhibits effective exercising. For objective rat training purposes, the development of a highly effective training system but with low interference is therefore viewed as an urgent issue for neurophysiological exercise experiments.
This study presents a highly effective running wheel system for experiments on reducing the severity of the effects of the stroke11. In addition to a reduced number of interference factors during a training process, this system detects the running position of a rat using infrared sensors embedded in the wheel, thereby achieving a more reliable estimate of effective exercise activity. The psychological stress imposed by traditional treadmills and the frequent exercise interruptions in MRWs both skew the objectivity of the resulting exercise estimates. A positioning running wheel (PRW) system presented in this study is developed in an attempt to minimize the unwanted interference while providing a reliable training model for quantifying effective exercise.
Ethics Statement: The experimental procedures were approved by the animal ethics committee of Southern Taiwan University of Science and Technology Laboratory Animal Center, National Science Council, Republic of China (Tainan, Taiwan).
1. Constructing the Running Wheel Structure
NOTE: All acrylic should be transparent. Wash the disassembled wheel with water, then use alcohol to wipe the rubber track and acrylic sheets after each use.
2. Deploying the Infrared Sensors and Defining the Effective Exercise Area
NOTE: Take into account the running wheel size and the rat length in the design of an infrared system. A rat only triggers a single sensor at a time. In this experiment, rats are between 20 and 23 cm long.
3. Driving the Running Wheel
4. Constructing an Adaptive Acceleration Curve
5. Controlling the Software Program
NOTE: Exclusively develop a code for the microcontroller-based motor operation and for signal transmission from the infrared sensors to a computer for subsequent data analysis.
6. Operating the Positioning Running Wheel System
7. Training the Rats
8. Animal and Stroke Model
9. Assessing Neural Damage
This section is devoted to comparisons, made 1 week after surgery, on the mNSS scores, incline plane test results and brain infarct volumes among five groups. Figure 4A and 4B present the average mNSS scores and the average of incline plane test results, respectively. The PRW group appears as the best in terms of mNSS improvement. The significant differences between PRW and MRW and between treadmill and PRW clearly suggest that the PRW protects against st...
This protocol describes a highly effective running wheel system for reducing the severity of the effects of the stroke in animals. As a rat-friendly testbed, this platform is designed as well in such a way that a stable running speed can be maintained by rats throughout a running process by means of a predetermined adaptive acceleration curve. In typical training systems, preset training speeds and durations are set manually. Once an exercise commences, a preset speed is reached very shortly. In this context, i...
The authors have nothing to disclose.
The authors would like to thank Dr. Jhi-Joung Wang, who is the Vice Superintendent of Education at Chi-Mei Medical Center, and Dr. Chih-Chan Lin from the Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, 901 Zhonghua, Yongkang Dist., Tainan City 701, Taiwan, for providing the shooting venue. They would also like to thank Miss Ling-Yu Tang and Mr. Chung-Ham Wang from the Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, for their valuable assistance in demonstrating the prototype system in real experiments with rats. The author gratefully acknowledges the support provided for this study by the Ministry of Science and Technology (MOST 104- 2218-E-167-001-) of Taiwan.
Name | Company | Catalog Number | Comments |
Brushless DC motor | Oriental Motor | BLEM512-GFS | |
Motor driver | Oriental Motor | BLED12A | |
Motor reducer | Oriental Motor | GFS5G20 | |
Speedometer | Oriental Motor | OPX-2A | |
Treadmill | Columbus Instruments | Exer-6M | |
Infrared transmitter | Seeed Studio | TSAL6200 | |
Infrared Receiver | Seeed Studio | TSOP382 | |
Microcontroller | Silicon Labs | C8051F330 | |
CCD camera | Canon Inc. | EOS 450D | |
Image processing software | Adobe Systems Incorporated | ADOBE Photoshop CS5 12.0 | |
Image analysis | Media Cybernetics | Pro Plus 4.50.29 | |
Sodium pentobarbital | Sigma-Aldrich (Saint Louis, MO, USA) | SIGMA P-3761 | |
Ketamine | Pfizer (Kent, UK) | 1867-66-9 | |
Atropine | Taiwan Biotech Co., Ltd. (Taoyuan, Taiwan) | A03BA01 | |
Xylazine | Sigma-Aldrich (Saint Louis, MO, USA) | SIGMA X1126 | |
Buprenorphine | Sigma-Aldrich (Saint Louis, MO, USA) | B9275 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved