JoVE Logo
Faculty Resource Center

Sign In





Representative Results






An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance

Published: September 19th, 2016



1Department of Electronic Engineering, National Chin-Yi University of Technology, 2Department of Electrical Engineering, National Cheng Kung University, 3Department of Biotechnology, Southern Taiwan University of Science and Technology, 4Department of Medical Research, Chi Mei Medical Center

This study presents an innovative running wheel-based animal mobility system to quantify an effective exercise activity in rats. A rat-friendly testbed is built, using a predefined adaptive acceleration curve, and a high correlation between the effective exercise rate and the infarct volume suggests the protocol's potential for stroke prevention experiments.

This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

Strokes exist continuously as a financial burden to countries globally, leaving countless patients physically and mentally disabled1,2. There is clinical evidence to suggest that regular exercise can improve nerve regeneration and strengthen neural connections3,4, and it is also shown that exercise can decrease the risk of suffering ischemic strokes5. With either a treadmill or a running wheel as an exercise training system, rodents, such as rats, serve as a proxy for humans for testing the effectiveness of exercises in a vast majority of clinical experiments6-8

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ethics Statement: The experimental procedures were approved by the animal ethics committee of Southern Taiwan University of Science and Technology Laboratory Animal Center, National Science Council, Republic of China (Tainan, Taiwan).

1. Constructing the Running Wheel Structure

NOTE: All acrylic should be transparent. Wash the disassembled wheel with water, then use alcohol to wipe the rubber track and acrylic sheets after each use.  


Log in or to access full content. Learn more about your institution’s access to JoVE content here

This section is devoted to comparisons, made 1 week after surgery, on the mNSS scores, incline plane test results and brain infarct volumes among five groups. Figure 4A and 4B present the average mNSS scores and the average of incline plane test results, respectively. The PRW group appears as the best in terms of mNSS improvement. The significant differences between PRW and MRW and between treadmill and PRW clearly suggest that the PRW protects against st.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol describes a highly effective running wheel system for reducing the severity of the effects of the stroke in animals. As a rat-friendly testbed, this platform is designed as well in such a way that a stable running speed can be maintained by rats throughout a running process by means of a predetermined adaptive acceleration curve. In typical training systems, preset training speeds and durations are set manually. Once an exercise commences, a preset speed is reached very shortly. In this context, i.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Dr. Jhi-Joung Wang, who is the Vice Superintendent of Education at Chi-Mei Medical Center, and Dr. Chih-Chan Lin from the Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, 901 Zhonghua, Yongkang Dist., Tainan City 701, Taiwan, for providing the shooting venue. They would also like to thank Miss Ling-Yu Tang and Mr. Chung-Ham Wang from the Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, for their valuable assistance in demonstrating the prototype system in real experiments with rats. The author gratefully acknowledges the support provided for this study by the Ministry of Science an....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Brushless DC motor Oriental Motor BLEM512-GFS
Motor driver Oriental Motor BLED12A
Motor reducer Oriental Motor GFS5G20
Speedometer Oriental Motor OPX-2A
Treadmill Columbus Instruments Exer-6M
Infrared transmitter  Seeed Studio TSAL6200
Infrared Receiver Seeed Studio TSOP382
Microcontroller Silicon Labs C8051F330
CCD camera Canon Inc. EOS 450D
Image processing software Adobe Systems Incorporated ADOBE Photoshop CS5 12.0
Image analysis Media Cybernetics Pro Plus 4.50.29
Sodium pentobarbital Sigma-Aldrich (Saint Louis, MO, USA) SIGMA P-3761
Ketamine Pfizer (Kent, UK)  1867-66-9
Atropine Taiwan Biotech Co., Ltd. (Taoyuan, Taiwan) A03BA01
Xylazine Sigma-Aldrich (Saint Louis, MO, USA) SIGMA X1126
Buprenorphine Sigma-Aldrich (Saint Louis, MO, USA) B9275
Anesthesia Sigma Chemical

  1. Mayo, N. E., Wood-Dauphinee, S., Cote, R., Durcan, L., Carlton, J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 83 (8), 1035-1042 (2002).
  2. Duncan, P. W., Goldstein, L. B., Horner, R. D., Landsman, P. B., Samsa, G. P., Matchar, D. B. Similar motor recovery of upper and lower-extremities after stroke. Stroke. 25 (6), 1181-1188 (1994).
  3. Raichlen, D. A., Gordon, A. D. Relationship between exercise capacity and brain size in mammals. PLoS One. 6 (6), (2011).
  4. Trejo, J. L., Carro, E., Torres-Aleman, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 21 (5), 1628-1634 (2001).
  5. Zhang, F., Wu, Y., Jia, J. Exercise preconditioning and brain ischemic tolerance. Neuroscience. 177, 170-176 (2011).
  6. Wang, R. Y., Yang, Y. R., Yu, S. M. Protective effects of treadmill training on infarction in rats. Brain Res. 922 (1), 140-143 (2001).
  7. Ding, Y., et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 124 (3), 583-591 (2004).
  8. Li, J., Luan, X. D., Clark, J. C., Rafols, J. A., Ding, Y. C. Neuroprotection against transient cerebral ischemia by exercise pre-conditioning in rats. Brain Res. 26 (4), 404-408 (2004).
  9. Leasure, J. L., Jones, M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience. 156 (3), 456-465 (2008).
  10. Chen, C. C., et al. A Forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Braz J Med Biol Res. 47 (10), 858-868 (2014).
  11. Chen, C. -. C., et al. Improved infrared-sensing running wheel systems with an effective exercise activity indicator. PLoS One. 10 (4), (2015).
  12. Fantegrossi, W. E., Xiao, W. R., Zimmerman, S. M. Novel technology for modulating locomotor activity as an operant response in the mouse: Implications for neuroscience studies involving "exercise" in rodents. J Neurosci Methods. 212 (2), 338-343 (2013).
  13. Hayes, K., et al. Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol. 115 (3), 289-296 (2008).
  14. Arida, R. M., Scorza, C. A., da Silva, A. V., Scorza, F. A., Cavalheiro, E. A. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett. 364 (3), 135-138 (2004).
  15. Waters, R. P., et al. Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiol Behav. (4-5), 1044-1054 (2008).
  16. Ke, Z., Yip, S. P., Li, L., Zheng, X. -. X., Tong, K. -. Y. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: A rat brain ischemia model. PLoS One. 6 (2), (2011).
  17. Caton, S. J., et al. Low-carbohydrate high-fat diets in combination with daily exercise in rats: Effects on body weight regulation, body composition and exercise capacity. Physiol Behav. 106 (2), 185-192 (2012).
  18. . C8051F330/1/2/3/4/5 datasheet Available from: (2006)
  19. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  20. Chen, J. L., et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 32 (4), 1005-1011 (2001).
  21. Chang, M. -. W., Young, M. -. S., Lin, M. -. T. An inclined plane system with microcontroller to determine limb motor function of laboratory animals. J Neurosci Methods. 168 (1), 186-194 (2008).
  22. Gartshore, G., Patterson, J., Macrae, I. M. Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol. 147 (2), 353-360 (1997).
  23. Chen, F., et al. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: Evolution monitored with MR imaging and histopathology. Eur J Radiol. 63 (1), 68-75 (2007).
  24. Almenning, I., Rieber-Mohn, A., Lundgren, K. M., Lovvik, T. S., Garnaes, K. K., Moholdt, T. Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: a pilot study. PLoS One. 10 (9), (2015).
  25. Costigan, S. A., Eather, N., Plotnikoff, R. C., Taaffe, D. R., Lubans, D. R. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 49 (19), (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved