JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Microscopia elettronica a scansione (SEM) Protocolli per problematico Plant, oomicete, e campioni fungine

Published: February 3rd, 2017

DOI:

10.3791/55031

1Biodiversity and Conservation Department, Real Jardín Botánico, CSIC, 2Research Support Unit, Real Jardín Botánico, CSIC, 3Mycology Department, Real Jardín Botánico, CSIC, 4Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)

Problems in the processing of biological samples for scanning electron microscopy observation include cell collapse, treatment of samples from wet microenvironments and cell destruction. Low-cost and relatively rapid protocols suited for preparing challenging samples such as floral meristems, oomycete cysts, and fungi (Agaricales) are compiled and detailed here.

I problemi più comuni nel trattamento dei campioni biologici per le osservazioni con il microscopio elettronico a scansione (SEM) includono il collasso delle cellule, il trattamento di campioni provenienti da microambienti umidi e la distruzione delle cellule. Utilizzando i giovani tessuti floreali, cisti oomiceti e spore di funghi (Agaricales) come esempi, i protocolli specifici per trattare i campioni delicati sono descritte qui che superano alcune delle principali sfide nel trattamento del campione per l'acquisizione di immagini sotto il SEM.

meristemi floreali fissate con FAA (formalina-acetico-alcol) ed elaborate con la Critical Point Dryer (CPD) non veniva visualizzato crollati pareti cellulari o organi distorti. Questi risultati sono cruciali per la ricostruzione dello sviluppo floreale. Un simile trattamento CPD-based dei campioni microambienti umidi, come le cisti oomiceti glutaraldeide fisso, è ottimale per testare la crescita differenziale di caratteristiche diagnostiche (ad esempio, le spine cisti) su diversi tipi di dobstrates. La distruzione delle cellule nutrici collegati a spore di funghi è stato evitato dopo la reidratazione, la disidratazione, e il trattamento CPD, un passo importante per ulteriori studi funzionali di queste cellule.

I protocolli descritti qui rappresentano a basso costo e le alternative rapide per l'acquisizione di immagini di buona qualità per ricostruire i processi di crescita e di studiare le caratteristiche diagnostiche.

In biologia, l'uso di microscopia elettronica a scansione (SEM) è stato esteso a studi di evoluzione strutturale, morfologia comparativa sviluppo degli organi, e la caratterizzazione di popolazioni o specie 1. Con la sua vista bidimensionale di strutture microscopiche, aree come micromorfologia e sistematica beneficiato dal SEM tecnica progressi a partire dalla seconda metà del 20 ° secolo. Ad esempio, l'introduzione della metodologia di rivestimento sputtering nel 1970 resa possibile osservazioni di materiali delicati quali apici dei germogli e fiori migliorando l'imaging del tessuto non conduttivi

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTA: Questo protocollo comprende sei sezioni principali, tre dedicati ad organismi specifici (sezioni 1-3), e tre descrivono le procedure comuni a tutti (4-6). Asterischi (*) indicano passi modificati dagli sperimentatori.

1. Studi di sviluppo e di strutture vegetali completamente formati

  1. Raccolta e la fissazione
    1. Se il materiale vegetale viene raccolto in un luogo senza accesso ad una cappa, introdurre e immergere il materiale in 70% di etanolo in provet.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Sviluppo floreale e la fissazione di sviluppo e strutture vegetali completamente formato

Utilizzando il protocollo FAA-CPD descritto qui, giovani e mature tessuti vegetali sono perfettamente fissati e disidratati per l'imaging SEM. Processi come lo sviluppo floreale possono essere ricostruiti, perché la topografia e la forma delle gemme non sia falsata da cellule restringimento (Figure 1b, 1d, 4a-f). Le str.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Per quanto riguarda i protocolli standard SEM, le procedure qui presentati sono relativamente rapido, facile da seguire, e le metodologie a basso costo. A seconda della quantità di campioni e sulla facilità di lavorazione, ci vogliono quattro o cinque giorni per acquisire immagini di buona qualità. Compreso adeguate misure di sicurezza per la CPD e il funzionamento SEM, le procedure sono facili da gestire. Particolare cautela deve essere assunto con formalina e la glutaraldeide (vedere i passaggi da 1.1.1 a 1.1.3 e 2.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Questo progetto ha ricevuto un finanziamento dal programma di ricerca e innovazione Orizzonte 2020 dell'Unione Europea con convenzione di sovvenzione n ° 634429. Questa pubblicazione riflette il punto di vista degli autori, e la Commissione Europea non può essere ritenuta responsabile per qualsiasi uso che possa essere fatto delle informazioni esso contenute. Abbiamo anche riconoscere il contributo finanziario da parte del Jardin Botanico, CSIC. SR è grata per l'Unione europea [ITN-SAPRO-238550] per il sostegno della sua ricerca in Saprolegnia. Vogliamo anche ringraziare Francisco Calonge per gentilmente fornire le immagini Herculanea Phellorinia....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Acetic acidNo specific supplierSkin irritation, eye irritation
aluminium stubsTed Pella, Inc.16221www.tedpella.com
Centrifuge tubesNo specific supplier
Critical Point DryerPolaron Quatum TechnologiesCPD7501
D (+) GlucoseMerck1,083,421,000
Double sided sellotapeNo specific supplier
Ethanol absoluteNo specific supplier.Flammable
European bacteriological agarConda1800.00www.condalab.com
Filter paperNo specific supplier
ForcepsNo specific supplier
Formalin 4%No specific supplier.Harmful, acute toxicity, skin sensitisation, carcinogenicity. Flammable
Glass cover slipsNo specific supplier
Glass hermetic container No specific supplier
Glutaraldehyde 25% DC 253857.1611  (L)Dismadel S.L.3336www.dismadel.com
Mycological peptoneConda1922.00www.condalab.com
needlesNo specific supplier
Petri dishesNo specific supplier
Plastic containersNo specific supplier
Sample holder with lid  for the critical point dryer Ted Pella, Inc.4591www.tedpella.com
scalpelsNo specific supplier
Scanning Electron MicroscopeHitachiS3000N
Software for SEM
Solution A: NaH2PO4
Solution B: Na2HPO4
Specimen holdersNo specific supplier
Sputter coaterBalzersSCD 004
StereomicroscopeNo specific supplier
Transmission Electron Microscope (TEM) gridsElectron Microscopy SciencesG200 (Square Mesh)www.emsdiassum.com
TweezersNo specific supplier

  1. Endress, P. K., Baas, P., Gregory, M. Systematic plant morphology and anatomy: 50 years of progress. Taxon. 49 (3), 401-434 (2000).
  2. Falk, R. H., Gifford, E. M., Cutter, E. G. Scanning electron microscopy of developing plant organs. Science. 168 (3938), 1471-1474 (1970).
  3. Damblon, F. Sputtering, a new method of coating pollen grains in scanning electron microscopy. Grana. 15 (3), 137-144 (1975).
  4. Everhart, T. E., Thornley, R. F. M. Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Instrum. 37 (7), 37246-37248 (1960).
  5. Collins, S. P., et al. Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc. Res. Techniq. 25 (5-6), 398-405 (1993).
  6. Fannes, W., Vanhove, M. P. M., Huyse, T., Paladini, G. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus. Parasitol. Res. 114 (5), 2031-2034 (2015).
  7. Erbar, C., Leins, P. Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales complex. Flora. 190 (4), 323-338 (1995).
  8. Jansen, S., Smets, E., Baas, P. Vestures in woody plants: a review. IAWA Journal. 19 (4), 347-382 (1998).
  9. Bortolin Costa, M. F., et al. Stigma diversity in tropical legumes with considerations on stigma classification. Bot. Rev. 80 (1), 1-29 (2014).
  10. Almeida, O. J. G., Cota-Sánchez, J. H., Paoli, A. A. S. The systematic significance of floral morphology, nectaries, and nectar concentration in epiphytic cacti of tribes Hylocereeae and Rhipsalideae (Cactaceae). Perspect. Plant Ecol. 15 (5), 255-268 (2013).
  11. Konarska, A. Comparison of the structure of floral nectaries in two Euonymus L. species (Celastraceae). Protoplasma. 252 (3), 901-910 (2015).
  12. Giuliani, C., Maleci Bini, L. Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant Syst. Evol. 276 (3-4), 199-208 (2008).
  13. Li, K., Zheng, B., Wang, Y., Zhou, L. L.Breeding system and pollination biology of Paeonia delavayi (Paeoniaceae), an endangered plant in the Southwest of China. Pak. J. Bot. 46 (5), 1631-1642 (2014).
  14. García, L., Rivero, M., Droppelmann, F. Descripción morfológica y viabilidad del polen de Nothofagus nervosa (Nothofagaceae). Bosque. 36 (3), 487-496 (2015).
  15. Prenner, G., Klitgaard, B. B. Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am. J. Bot. 95 (11), 1349-1365 (2008).
  16. Ratnayake, K., Joyce, D. C., Webb, R. I. A convenient sample preparation protocol for scanning electron microscope examination of xylem-occluding bacterial biofilm on cut flowers and foliage. Sci. Hortic-Amsterdam. 140 (1), 12-18 (2012).
  17. Çolak, G., Celalettin Baykul, M., Gürler, R., Çatak, E., Caner, N. Investigation of the effects of aluminium stress on some macro and micro-nutrient contents of the seedlings of Lycopersicon esculentum Mill. by using scanning electron microscope. Pak. J. Bot. 46 (1), 147-160 (2014).
  18. Arafa, S. Z. Scanning electron microscope observations on the monogenean parasite Paraquadriacanthus nasalis from the nasal cavities of the freshwater fish Clarias gariepinus in Egypt with a note on some surface features of its microhabitat. Parasitol. Res. 110 (5), 1687-1693 (2012).
  19. Uppalapatia, S. R., Kerwinb, J. L., Fujitac, Y. Epifluorescence and scanning electron microscopy of host-pathogen interactions between Pythium porphyrae (Peronosporales, Oomycota)and Porphyra yezoensis (Bangiales, Rhodophyta). Bot. Mar. 44 (2), 139-145 (2001).
  20. Meaney, M., Haughey, S., Brennan, G. P., Fairweather, I. A scanning electron microscope study on the route of entry of clorsulon into the liver fluke, Fasciola hepatica. Parasitol. Res. 95 (2), 117-128 (2005).
  21. Sundarasekar, J., Sahgal, G., Subramaniam, S. Anti-candida activity by Hymenocallis littoralis extracts for opportunistic oral and genital infection Candida albicans. Bangladesh J. Pharmacol. 7 (3), 211-216 (2012).
  22. Benhamou, N., Rey, P., Picard, K., Tirilly, Y. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology. 89 (6), 506-517 (1999).
  23. Singh, A., et al. First evidence of putrescine involvement in mitigating the floral malformation in mangoes: A scanning electron microscope study. Protoplasma. 251 (5), 1255-1261 (2014).
  24. Xiang, C., et al. Fine mapping of a palea defective 1 (pd1), a locus associated with palea and stamen development in rice. Plant Cell Rep. 34 (12), 2151-2159 (2015).
  25. Mendoza, L., Hernandez, F., Ajello, L. Life cycle of the human and animal oomycete pathogen Pythium insidiosum. J. Clin. Microbiol. 31 (11), 2967-2973 (1993).
  26. Bello, M. A., Rudall, P. J., González, F., Fernández, J. L. Floral morphology and development in Aragoa (Plantaginaceae) andrelated members of the order Lamiales. Int. J. Plant Sci. 165 (5), 723-738 (2004).
  27. Bello, M. A., Hawkins, J. A., Rudall, P. J. Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann. Bot. 100 (4), 1491-1505 (2007).
  28. Bello, M. A., Hawkins, J. A., Rudall, P. J. Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. Int. J. Plant Sci. 171 (5), 482-498 (2010).
  29. Bello, M. A., Alvarez, I., Torices, R., Fuertes-Aguilar, J. Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Ann. Bot. 112 (8), 1597-1612 (2013).
  30. Bello, M. A., Martínez-Asperilla, A., Fuertes-Aguilar, J. Floral development of Lavatera trimestris and Malva hispanica reveals the nature of the epicalyx in the Malva generic alliance. Bot. J. Linn. Soc. 181 (1), 84-98 (2016).
  31. Calonge, F. D., Martínez, A. J., Falcó, I., Samper, L. E. Phellorinia herculanea f. stellata f. nova encontrada en España. Bol. Soc. Micol.Madrid. 35 (1), 65-70 (2011).
  32. Liu, Y., et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8 (10), 2002-2014 (2014).
  33. Sandoval-Sierra, J. V., Diéguez-Uribeondo, J. A comprehensive protocol for improving the description of Saprolegniales (Oomycota): two practical examples (Saprolegnia aenigmatica sp. nov. and Saprolegnia racemosa sp. nov.). PLOS one. , (2015).
  34. Endress, P. K. Zur vergleichenden Entwicklungsmorphologie, Embryologie und Systematik bei Laurales. Bot. Jahrb. Syst. 92 (2), 331-428 (1972).
  35. Tucker, S. Floral development in Saururus cernuus (Saururaceae):1. Floral initiation and stamen development. Am. J. Bot. 62 (3), 993-1005 (1975).
  36. Endress, P. K., Matthews, M. L. Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst. Evol. 298 (2), 257-276 (2012).
  37. Beakes, G. W., Glockling, S. L., Sekimoto, S. The evolutionary phylogeny of the oomycete "fungi&#34. Protoplasma. 249 (1), 3-19 (2012).
  38. Romansic, J. M., et al. Effects of the pathogenic water mold Saprolegnia ferax on survival of amphibian larvae. Dis. Aquat. Organ. 83 (3), 187-193 (2009).
  39. van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challengues for an old problem. Mycologist. 20 (3), 99-104 (2006).
  40. Johansen, D. A. . Plant microtechnique. , (1940).
  41. Unestam, T. Studies on the crayfish plague fungus Aphanomyces astaci. Some factors affecting growth in vitro. Physiol. Plantarum. 18 (2), 483-505 (1965).
  42. Cerenius, L., Söderhäll, K. Repeated zoospore emergence from isolated spore cysts of Aphanomyces astaci. Exp. Mycol. 8 (4), 370-377 (1984).
  43. Diéguez-Uribeondo, J., Cerenius, L., Söderhäll, K. Repeated zoospore emergence in Saprolegnia parasitica. Mycol. Res. 98 (7), 810-815 (1994).
  44. Söderhäll, K., Svensson, E., Unestam, T. Chitinase and protease activities in germinating zoospore cysts of a parasitic fungus, Aphanomyces astaci, Oomycetes. Mycopathologia. 64 (1), 9-11 (1978).
  45. Echlin, P. . Handbook of sample preparation for scanning electron microscopy and X-Ray Microanalysis. , (2009).
  46. Osumi, M., et al. Preparation for observation of fine structure of biological specimens by high-resolution SEM. Microscopy. 32 (4), 321-330 (1983).
  47. Rezinciuc, S. . The Saprolegniales morpho-molecular puzzle: an insight into markers identifying specific and subspecific levels in main parasites. , (2013).

Tags

Biologia Vegetale

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved