JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Swab Sampling Method for the Detection of Human Norovirus on Surfaces

Published: February 6th, 2017

DOI:

10.3791/55205

1Division of Viral Diseases, Centers for Disease Control and Prevention

A macrofoam based sampling methodology was developed and evaluated for the detection and quantification of norovirus on environmental hard surfaces.

Human noroviruses are a leading cause of epidemic and sporadic gastroenteritis worldwide. Because most infections are either spread directly via the person-to-person route or indirectly through environmental surfaces or food, contaminated fomites and inanimate surfaces are important vehicles for the spread of the virus during norovirus outbreaks.

We developed and evaluated a protocol using macrofoam swabs for the detection and typing of human noroviruses from hard surfaces. Compared with fiber-tipped swabs or antistatic wipes, macrofoam swabs allow virus recovery (range 1.2-33.6%) from toilet seat surfaces of up to 700 cm2. The protocol includes steps for the extraction of the virus from the swabs and further concentration of the viral RNA using spin columns. In total, 127 (58.5%) of 217 swab samples that had been collected from surfaces in cruise ships and long-term care facilities where norovirus gastroenteritis had been reported tested positive for GII norovirus by RT-qPCR. Of these 29 (22.8%) could be successfully genotyped. In conclusion, detection of norovirus on environmental surfaces using the protocol we developed may assist in determining the level of environmental contamination during outbreaks as well as detection of virus when clinical samples are not available; it may also facilitate monitoring of effectiveness of remediation strategies.

Human noroviruses are a leading cause of epidemic and sporadic acute gastroenteritis worldwide 1,2,3. The virus is extremely contagious and transmission occurs through direct person to person interaction or indirectly through contact with contaminated food, water or environmental surfaces. Noroviruses can be shed for extended periods and prolonged survival of the virus on environmental surfaces has been documented 1,2,3. During peak shedding, billions of virus particles are released ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Swab Sampling in the Field

  1. Wear a clean pair of gloves.
  2. Measure the size of the sampling area without touching the surface using a measuring tape or ruler. Try to estimate the area as accurately as possible and fill out a report form (Supplementary Table 1).
  3. Check the swab kit for possible leakages and label sample transport bags and swab kits.
  4. Move the swab across the sampling area as follows: one stroke in horizontal direction, one stroke in vertical directi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 1 presents a flowchart of the swab sampling protocol. This protocol consists of four main steps; 1) sample collection, 2) sample storage and transportation, 3) viral RNA purification and concentration and 4) RT-qPCR assay and genotyping.

Figure 1
Figure 1: Flow chart of the final protocol for environmental surface sampling of noroviru.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Noroviruses have a 50% human infectious dose between 18 and 103 virus particles20. Therefore, even low-level contamination of surfaces may pose a public health risk. Several aspects of the swab sampling protocol were evaluated including: 1) different swab materials, 2) storage condition swabs during transport, 3) viral RNA concentration, and 4) coliphage MS2 as internal extraction control.

Until recently, only the performance of swabs made from cotton, polyes.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors have no acknowledgements.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Generic name for kits
Macrofoam swabPremoistened EnviroMax Swab kit Puritan2588060PFUW
 RNA Lysis buffer CDC UNEX bufferMicrobiologicsCat No MR0501
RNA extraction spin columnMidi columnOmega BiotekCat No R6664-02
RNA purification spin columnZymol RNA Clean and Concentrator kit Zymo ResearchCat No R1016
Real time RT-PCR kitAgPath kit One-Step RT-PCR KitLife TechnologiesCat No 4387391
Conventional RT-PCR kitQiagen one step RT-PCR kitQiagen kitCat No 210212
Gel extraction kitQiagen QIAquick gel extraction kitQiagen kitCat No 28704 or 28706
Coliphage MS2ATCCCat No 15597-B1
RNA run-off transcriptsBacteriophage MS2 (ATCC No. 15597-B1) can be cultivated using Escherichia coli (E.coli) Famp (ATCC No. 700891). 
Realtime PCR platformApplied BiosystemsModel ABI 7500GI and GII RNA run off transcripts were quantified spectrophotometrically at A260, diluted in diethyl pyrocarbonate-treated water to 1 × 106 copies/ μl, and stored at −80°C with 1.0 U /μl RNasin (Promega, Madison, WI). 
Optical 96-well reaction plateThermo ScientificCat No 4316813
MicroAmp Clear Adhesive Film Thermo ScientificCat No 4306311

  1. Isakbaeva, E. T., et al. Norovirus transmission on cruise ship. Emerg. Infect. Dis. 11, 154-158 (2005).
  2. Lopman, B. A., Gastañaduy, P., Park, G. W., Hall, A. J., Parashar, U. D., Vinjé, P. Environmental transmission of norovirus gastroenteritis. Curr. Opin. Virol. 2 (1), 1-7 (2011).
  3. Malek, M., et al. Outbreak of norovirus infection among river rafters associated with packaged delicatessen meat, Grand Canyon, 2005. Clin Infect Dis. 48 (1), 31-37 (2009).
  4. Atmar, R. L., et al. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14 (10), 1553-1557 (2008).
  5. Glass, R. I., Parashar, U. D., Estes, M. K. Norovirus gastroenteritis. N. Engl. J. Med. 361 (18), 1776-1785 (2009).
  6. Park, G. W., et al. Evaluation of a New Environmental Sampling Protocol for Detection of Human Norovirus on Inanimate Surfaces. Appl. Environ. Microbiol. 81 (17), 5987-5992 (2015).
  7. Barker, J., Jones, M. V. The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. J. Appl. Microbiol. 99, 339-347 (2005).
  8. Tung-Thompson, G., Libera, D. A., Koch, K. L., de Los Reyes, F. L., Jaykus, L. A. Aerosolization of a Human Norovirus Surrogate, Bacteriophage MS2, during Simulated Vomiting. PloS one. 10, 0134277 (2015).
  9. Atmar, R. L., et al. Determination of the 50% human infectious dose for Norwalk virus. J. Infect. Dis. 209 (7), 1016-1022 (2014).
  10. Petrignani, M., van Beek, J., Borsboom, G., Richardus, J. H., Koopmans, M. Norovirus introduction routes into nursing homes and risk factors for spread: a systematic review and meta-analysis of observational studies. J. Hosp. Infect. 89 (3), 163-178 (2015).
  11. . Centers for Disease Control Prevention. Norovirus outbreak in an elementary school--District of Columbia, February 2007. MMWR. Morb. Mortal. Wkly. Rep. 56 (51-52), 1340-1343 (2008).
  12. Cheesbrough, J. S., Barkess-Jones, L., Brown, D. W. Possible prolonged environmental survival of small round structured viruses. J. Hosp. Infect. 35, 325-326 (1997).
  13. Julian, T. R., Tamayo, F. J., Leckie, J. O., Boehm, A. B. Comparison of surface sampling methods for virus recovery from fomites. Appl. Environ. Microbiol. 77, 6918-6925 (2011).
  14. Taku, A., et al. Concentration and detection of caliciviruses from food contact surfaces. J. Food. Prot. 65, 999-1004 (2002).
  15. Scherer, K., Ellerbroek, L., Schulenburg, J., Johne, R., Klein, G. Application of a swab sampling method for the detection of norovirus and rotavirus on artifically contaminated food and environmental surfaces. Food. Environ. Virol. 1 (42), 42-49 (2009).
  16. Herzog, A. B., et al. Evaluation of sample recovery efficiency for bacteriophage P22 on fomites. Appl. Environ. Microbiol. 78, 7915-7922 (2012).
  17. Vega, E., et al. CaliciNet: A Novel Surveillance Network for Norovirus Gastroenteritis Outbreaks in the United States. Emerging Infectious Diseases. 17 (8), 1389-1395 (2011).
  18. Rolfe, K. J., et al. An internally controlled, one-step, real-time RT-PCR assay for norovirus detection and genogrouping. J Clin Virol. 39 (4), 318-321 (2007).
  19. Kittigul, L., et al. Norovirus GII-4 2006b variant circulating in patients with acute Thailand during a 2006-2007 study. J. Med. Virol. 82 (5), 854-860 (2010).
  20. Teunis, P. F., et al. Norwalk virus: how infectious is it. J. Med. Virol. 80 (8), 1468-1476 (2008).
  21. Wollants, E., et al. Evaluation of a norovirus sampling method using sodium dodecyl sulfate/EDTA-pretreated chromatography paper strips. J. Virol. Methods. 122, 45-48 (2004).
  22. Weir, M. H., Shibata, T., Masago, Y., Cologgi, D., Rose, J. B. The Effect of Surface Sampling and Recovery of Viruses and Non-Spore Forming Bacteria on a QMRA Model for Fomites. Environ. Sci. Technol. 50 (11), 5945-5952 (2016).
  23. . Microbiology of food and animal feed-Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR. International Organization for Standardization (ISO). , (2013).
  24. Huslage, K., Rutala, W. A., Sickbert-Bennett, E., Weber, D. J. A quantitative approach to defining "high-touch" surfaces in hospitals. Infect. Control. Hosp. Epidemiol. 31 (8), 850-853 (2010).
  25. Wu, H. M., et al. A norovirus outbreak at a long-term-care facility: the role of environmental surface contamination. Infect. Control. Hosp. Epidemiol. 26 (10), 802-810 (2005).
  26. Ikner, L. A., Gerba, C. P., Bright, K. R. Concentration and recovery of viruses from water: a comprehensive review. Food Environ. Virol. 4 (2), 41-67 (2012).
  27. Gallimore, C. I., et al. Environmental monitoring for gastroenteric viruses in a pediatric primary immunodeficiency unit. J. Clin. Microbiol. 44 (2), 395-399 (2006).
  28. Ganime, A. C., et al. Dissemination of human adenoviruses and rotavirus species A on fomites of hospital pediatric units. Am J Infect Control. , (2016).
  29. Verani, M., Bigazzi, R., Carducci, A. Viral contamination of aerosol and surfaces through toilet use in health care and other settings. Am J Infect Control. 42 (7), 758-762 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved