A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol allows a researcher to isolate and characterize tissue-resident macrophages in various hallmark inflamed tissues extracted from diet-induced models of metabolic disorders.
Obesity promotes a chronic inflammatory state that is largely mediated by tissue-resident macrophages as well as monocyte-derived macrophages. Diet-induced obesity (DIO) is a valuable model in studying the role of macrophage heterogeneity; however, adequate macrophage isolations are difficult to acquire from inflamed tissues. In this protocol, we outline the isolation steps and necessary troubleshooting guidelines derived from our studies for obtaining a suitable population of tissue-resident macrophages from mice following 18 weeks of high-fat (HFD) or high-fat/high-cholesterol (HFHCD) diet intervention. This protocol focuses on three hallmark tissues studied in obesity and atherosclerosis including the liver, white adipose tissues (WAT), and the aorta. We highlight how dualistic usage of flow cytometry can achieve a new dimension of isolation and characterization of tissue-resident macrophages. A fundamental section of this protocol addresses the intricacies underlying tissue-specific enzymatic digestions and macrophage isolation, and subsequent cell-surface antibody staining for flow cytometric analysis. This protocol addresses existing complexities underlying fluorescent-activated cell sorting (FACS) and presents clarifications to these complexities so as to obtain broad range characterization from adequately sorted cell populations. Alternate enrichment methods are included for sorting cells, such as the dense liver, allowing for flexibility and time management when working with FACS. In brief, this protocol aids the researcher to evaluate macrophage heterogeneity from a multitude of inflamed tissues in a given study and provides insightful troubleshooting tips that have been successful for favorable cellular isolation and characterization of immune cells in DIO-mediated inflammation.
Mouse models have been extensively used to study the dynamics of human diseases. Proper isolation of tissue resident cells from mice in a diseased state can provide a platform for understanding the molecular and cellular contributions to the pathogenesis of a disease1. One disorder that is of critical importance is obesity. The incidence of obesity continues to rise worldwide in parallel with insulin resistance and type 2 diabetes mellitus, cardiovascular disease, and fatty liver disease2,3. Excessive nutrient consumption is further skewed by decreased physical activity triggering altered signals emanating from adipose tissue, which can alter the cellular milieu of other peripheral tissues such as the aorta and liver4. Such disruption of metabolic homeostasis results in a chronic low grade systemic inflammation5.
Classical activation of macrophages resident to the aorta and liver as well as their recruitment to white adipose tissue (WAT) has been shown to not only initiate dysregulation of metabolic signals but also sustain inflammation6,7. The phenotypic and functional heterogeneity of macrophages is strongly associated with the pathogenesis of obesity related co-morbidities7. The dynamic plasticity in macrophage polarization allows for these cells to exhibit a range of activated phenotypes that coordinate the progression and resolution of inflammation8. While classically activated (M1) macrophages are implicated in the propagation of inflammation, alternatively activated (M2) macrophages have been associated with resolution and tissue repair9,10.
As the body undergoes metabolic stress, white adipose tissue abnormally accumulates. The expanded adipose tissue attracts and retains inflammatory cells that profoundly alter normal adipocyte function to promote insulin resistance, hyperglycemia and ultimately type 2 diabetes mellitus, insulin resistance or hyperglycemia11,12. In parallel, white adipose tissue remodels in response to inflammatory signals released by infiltrated classically activated (M1) adipose tissue macrophages (ATMs)13,14. This multi-cellular organ exerts a cascade of signals that derails the normal function of other body organs such as the aorta and liver4.
The liver is a metabolic powerhouse that adapts in response to stimuli originating from nearby dysregulated WAT15. Hepatic macrophages or Kupffer cells, in response to metabolic changes, secrete inflammatory cytokines that transform both parenchymal and non-parenchymal cell phenotype and promote tissue remodeling. Hepatic lipid accumulation, inflammation, excessive extracellular matrix deposits, necrosis and eventual function loss follows the inflammatory insults contributing to the wide spectrum of liver damage associated with non-alcoholic fatty liver disease16,17,18.
In parallel to compromised WAT and liver function, large arteries accumulate lipids within the arterial wall as the body undergoes chronic metabolic stress19. Arterial lipid accumulation triggers the secretion of chemokines by activated endothelial cells and subsequent recruitment of monocytes20. Once recruited, monocytes proliferate, differentiate, ingest lipoproteins and become foam cells. Atherogenesis is initiated and sustained by the pro-inflammatory activity of recruited and tissue resident lipid-laden macrophages. Succumbing to the extracellular and intracellular stress signals relayed in this atherogenic microenvironment, these macrophages then engage in an apoptotic signaling cascade. As these foam cells die, they contribute their lipid filled contents to the necrotic core of the lesion, which then leads to plaque rupture, myocardial infarction, and stroke.
Collectively, the heterogeneity of macrophage phenotypes in part orchestrates the obesity induced by inflammatory changes observed in dysregulated tissues such as WAT, liver and aorta8,21. Characterization of recruited and tissue resident macrophages could provide insight into potential molecular targets that manipulate macrophage phenotype1. To effectively characterize macrophages from obesity-induced inflamed tissues, a single-cell suspension can be obtained through enzymatic digestion. Such dissociation protocols must be effective in sufficiently degrading connective tissue while minimizing immune cell death and providing optimal cell yield. The enzyme mixture is dependent on the type of tissue and its structural make up. Resilient tissues such as the aorta requires stronger enzymatic activity, as compared to the liver and WAT, to achieve tissue dissociation. From the single cell suspension, tissue resident macrophages can be unambiguously characterized or isolated for further downstream analyses such as transcriptional profiling.
Here a tissue-specific protocol is described that uses collagenase-dependent tissue digestion and polychromatic flow cytometry to effectively isolate and characterize tissue-resident macrophages obtained from traditional diet induced obesity, atherosclerosis, simple steatosis and steatohepatitis mouse models. Simultaneous staining of cell surface markers with antibodies against leukocyte- (CD45 and/or CD11b) and macrophage- (F4/80) specific antigens is often used to identify macrophage populations22. Fluorescence-activated cell sorting (FACS) is a powerful strategy used to sort these identified populations at high purity. The sorted population can then be evaluated for phenotype specific gene profiles using downstream molecular analysis (such as quantitative real time polymerase chain reaction)23. Although standard flow cytometry and flow cytometry-based cell sorting are powerful tools in distinguishing macrophages within a vastly heterogeneous cell suspension, the former protocols must be optimized to ensure successful output. In this study, protocols that effectively isolate and characterize viable tissue specific macrophages are described; more importantly, this study provides crucial insight into technical issues that often arise, as well as proactive and trouble-shooting strategies to prevent and/or resolve them.
All experimental protocols (Sections 1, 1.2, and 1.3) were approved by the Institutional Animal Care and Use Committee (IACUC) at Pennsylvania State University.
Tissue | Dissociation Buffers Preparation | Final Volume | Storage |
White Adipose Tissue (WAT) | Dissociation Buffer: 2.5% HEPES, 10 mg/mL Bovine serum albumin (BSA), 3 mg/mL (0.3%) Collagenase Type II in Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L glucose without L-glutamine and sodium pyruvate | 500 mL | minus 80 °C (10 mL aliquots) |
Liver | 25x Perfusion Buffer Concentrate (PBC): 3.55 M NaCl, 168 mM KCl, 240 mM HEPES, 150 mM NaOH in distilled deionized H2O | 500 mL | minus 20 °C (40 mL aliquots) |
Preservation Buffer (PRB): 1% BSA in 1x Perfusion Buffer | 1 L | 4 °C | |
Dissociation Buffer: 1x Perfusion Buffer supplemented with 4.76 mM CaCl2 and 72 U/mL Collagenase Type IV | 50 mL (per mouse) | Prepare immediately prior to use | |
Aorta | Dissociation Buffer: 125 U/mL Collagenase Type XI, 60 U/mL Hyaluronidase type I, 60 U/mL DNase I, 450 U/mL Collagenase Type I, 20 mM HEPES in 1x Phosphate Buffered Saline (PBS) | 500 mL | minus 80 °C (10 mL aliquots) |
Table 1: Tissue specific perfusion buffer recipes.
1. Tissue Isolation and Dissociation
2. Flow Cytometry and FACS Staining
Fluorophore | R-Phycoerythrin (PE) | PE/Cyanine (Cy) 7 | PE/Cyanine (Cy) 5 | Pacific Blue (PB) |
Laser (nm) | Blue (488 nm) / Yellow (561-570 nm) - Green (532 nm) | Blue (488 nm) / Yellow (561-570 nm) - Green (532 nm) | Blue (488 nm) / Yellow (561-570 nm) - Green (532 nm) | Violet (405 nm) |
ExcitationMAX (nm) | 496 | 496 | 496 | 401 |
EmissionMAX (nm) | 578 | 785 | 667 | 455 |
Phenotypic Marker | F4/80 | CD11c | CD11b | CD45 |
EMR1, Ly71 | αX integrin, integrin αX chain, CR4, p150, ITGAX | αM integrin, Mac-1, Mo1, CR3, Ly-40, C3biR, ITGAM | T200, Ly-5, LCA | |
Targeted Cell Type | Tissue Resident Macrophages | Classically Activated (M1) Macrophages | Monocytes / macrophages | Leukocytes (Macrophages / monocytes, lymphocytes, and granulocytes) |
Subset of Dendritic cells | Dendritic cells, NK cells, Activated T cells, and a subset of intestinal intraepithelial lymphocytes (IEL) | Granulocytes, dendritic cells, NK cells, and subsets of T and B cells | ||
Dilution Factor | 1:50 | 1:100 | 1:100 | 1:100 |
Isotype Controls | PE Rat IgG2a | PE/Cy7 Armenian Hamster IgG | PE/Cy5 Rat IgG2b | Pacific Blue Rat IgG2c |
Table 2: List of fluorophore tagged antibodies specific for discriminating tissue resident macrophages.
When using apolipoprotein E deficient (ApoE KO) C57BL/6 (BL6) mice maintained on a high fat high cholesterol diet (HCHFD or HCD) for 18 weeks, 1 x 104 - 2 x 104 CD45+F4/80+ aortic macrophages can be isolated when two samples are pooled. Livers dissected from HFHCD-fed ApoE KO mice, produced greater than 5 x 105 sorted Kupffer cells (which depends on available sorting time). When using high fat diet (HFD) fed wild type (WT) C57BL/6 mic...
Diet-induced metabolic disorder models that mimic co-morbidities such as atherosclerosis, simple steatosis, steatohepatitis and type 2 diabetes are extensively used to better understand the underlying molecular mechanisms of disease progression. Collagenase dependent digestion is often used to dissociate tissues to liberate cells from the extracellular matrix (ECM)16,27. Enzymes such as collagenase disrupt collagen which provides structural support for neighborin...
Authors have no conflict of interests to disclose.
We would like to thank the Flow Cytometry Core Facility at The Pennsylvania State University Millennium Science Complex.
Name | Company | Catalog Number | Comments |
26 G x 5/8 in Needles | BD | 305115 | |
23 G x 0.75 in needle x 12 in. tubing Blood Collection Set | BD | 367297 | Used for cannulation of subhepatic IVC during liver perfusion |
21 G 1 1/2 in. Needles | BD | 305156 | |
1 mL syringe with rubber stops | BD | 309659 | |
10 mL Syringes | BD | 309604 | |
1 mL Syringe | BD | 309659 | |
F4/80 PE | Biolegend | 123110 | |
CD11c PE/Cy7 | Biolegend | 117318 | |
CD11b PE/Cy5 | eBioscience | 15-0112-81 | |
Anti-mouse CD16/32 Fc Block | Biolegend | 101320 | |
CD45 Pacific Blue | Biolegend | 103126 | |
PE Rat IgG2a | Biolegend | 400508 | |
PE/Cy7 Armenian Hamster IgG | Biolegend | 400922 | |
PE/Cy5 Rat IgG2b | Biolegend | 400610 | |
Pacific Blue Rat IgG2c | Biolegend | 400717 | |
Dulbecco’s Modified Eagle Medium (DMEM) | Cellgro | 15-017-CV | |
1x Phosphate Buffered Saline (PBS) | Cellgro | 21-031-CV | |
70 μm cell strainers | Corning, Inc. | 352350 | |
1.7 mL microcentrifuge tube | Denville | C2170 | |
Paraformaldehyde Aqueous Solution -16x | Electron Microscopy Sciences | CAS #30525-89-4 | |
Micro Dissecting Scissors, 3.5 inch, Straight, 23 mm, Sharp | Stoelting | 52132-10P | Used for general dissecting purposes |
Micro Forceps, 4 inches, full curve, 0.8 mm | Stoelting | 52102-37P | Used for general dissecting purposes |
Spring dissection scissors – 3 mm Cutting edge | Fine Science Tool | 15000-10 | Used for aorta dissection Steps 1.3.3.17 to 1.3.3.28 |
Curved 0.07 mm x 0.04 mm Tip Forceps | Fine Science Tool | 11297-10 | Used for aorta dissection Steps 1.3.3.17 to 1.3.3.28 |
Hemostatic Forceps (Curved) | Fine Science Tool | 13021-12 | |
Heparin Sodium Salt | Fischer Scientific | 9041-08-1 | |
35 mm Cell Culture/Petri Dishes | Fischer Scientific | 12-565-90 | |
Polystyrene Petri Dishes (10 cm) w/lid | Fischer Scientific | 08-757-100D | |
15 mL Conical Centrifuge Tubes (Polypropylene) | Fischer Scientific | 14-959-53A | |
50 mL Conical Centrifuge Tubes (Polypropylene) | Fischer Scientific | 14-432-22 | |
5 mL Round-Bottom Polystyrene Tubes | Fischer Scientific | 14-959-5 | |
Fetal Bovine Serum | Gemini Bio-Products | 100-106 | |
Ethanol (Stock Ethyl Alcohol Denatured, Anyhydrous) | Millipore | EX0285-1 | |
Bovine Serum Albumin | Rockland | BSA-50 | |
HEPES | Sigma-Aldrich | H3375 | |
Collagenase Type II | Sigma-Aldrich | C6885 | |
Collagenasse Type XI | Sigma-Aldrich | C7657 | |
Hyaluronidase Type I | Sigma-Aldrich | H3506 | |
DNAse | Sigma-Aldrich | DN25 | |
Collagenase Type I | Sigma-Aldrich | C0130 | |
NaOH | Sigma Aldrich | 1310-73-2 | |
CaCl2 | Sigma Aldrich | 449709-10G | |
500 mL beaker | Sigma Aldrich | 02-540M | |
4 cm Hemostatic clamp | Stoelting | 52120-40 | |
Toothed forceps | Stoelting | 52104-33P | |
50 μm Disposable filters | Systemex | 04-0042-2317 | |
Collagenase Type IV | ThermoFischer Scientific | 17104019 | |
Ammonium Chloride Potassium (ACK) | ThermoFischer Scientific | A1049201 | |
Razors (0.22 mm (0.009")) | VWR International | 55411-050 | |
Texas Red Live/Dead stain | Red viability stain (in Figure 1A) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved