A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Auditory brainstem neurons of avians and mammals are specialized for fast neural encoding, a fundamental process for normal hearing functions. These neurons arise from distinct precursors of embryonic hindbrain. We present techniques utilizing electroporation to express genes in the hindbrain of chicken embryos to study gene function during auditory development.
Electroporation is a method that introduces genes of interest into biologically relevant organisms like the chicken embryo. It is long established that the chicken embryo is an effective research model for studying basic biological functions of auditory system development. More recently, the chicken embryo has become particularly valuable in studying gene expression, regulation and function associated with hearing. In ovo electroporation can be used to target auditory brainstem regions responsible for highly specialized auditory functions. These regions include the chicken nucleus magnocellularis (NM) and nucleus laminaris (NL). NM and NL neurons arise from distinct precursors of rhombomeres 5 and 6 (R5/R6). Here, we present in ovo electroporation of plasmid-encoded genes to study gene-related properties in these regions. We show a method for spatial and temporal control of gene expression that promote either gain or loss of functional phenotypes. By targeting auditory neural progenitor regions associated with R5/R6, we show plasmid transfection in NM and NL. Temporal regulation of gene expression can be achieved by adopting a tet-on vector system. This is a drug inducible procedure that expresses the genes of interest in the presence of doxycycline (Dox). The in ovo electroporation technique – together with either biochemical, pharmacological, and or in vivo functional assays – provides an innovative approach to study auditory neuron development and associated pathophysiological phenomena.
Fast neural encoding of sound is essential for normal auditory functions. These include sound localization abilities1, speech in noise discrimination2, and the comprehension of other behaviorally relevant communication signals3. Analogous neurons located in the auditory brainstem of both avians and mammals are highly specialized for fast neural encoding4. These include the chicken nucleus magnocellularis (NM), the nucleus laminaris (NL) and their mammalian analogs, the anteroventral cochlear nucleus (AVCN) and the medial superior olive (MSO), respectively5. However, developmental mechanisms regulating fast neural encoding are poorly understood in the auditory brainstem. Therefore, it is advantageous to study specific genes that are responsible for fast neural encoding in order to better understand their expression, regulation and function in auditory development.
The developing chicken embryo is an effective and well-established research tool to study basic biological questions of auditory system development6,7. Recent molecular advances have addressed these biological questions in the developing chicken embryo by expressing or knocking down genes of interest in order to analyze in vivo gene function8,9. Investigating the regulatory role of specific genes is a significant advancement in understanding pathologies associated with auditory deficits. Here, we present in ovo electroporation of plasmid-encoded genes into the chicken auditory brainstem where fast neural encoding of sound occurs10. By targeting auditory neural progenitor regions associated with rhombomeres 5 and 611,12 (R5/R6), we show spatial control of plasmid transfection in NM and NL. In addition, we show temporal regulation of expression by adopting a tet-on vector system. This is a drug inducible procedure that expresses the genes of interest in the presence of doxycycline (Dox)8.
All procedures were approved by Northwestern University Institutional Animal Care and Use Committees, and carried out in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.
1. Egg Handling
2. Preparation
3. Windowing
NOTE: The windowing procedure has been published before13. Please see reference 13 for additional visual information.
4. Plasmid Injection
5. Electroporation
6. Tet-on System for Temporal Control of Gene Expression
7. Preparation of Dissecting Area for Brainstem Slices
NOTE: The following sections (7 - 9) and procedures have been published before14. Please see these references for additional visual information.
8. Isolation of Chicken Auditory Brainstem
9. Preparation of Brainstem Slices for In Vivo Electrophysiology or Imaging
We show here that in ovo electroporation permits gene expression in a normally developing biological system. Plasmid-encoded genes are focally injected into the neural tube overlying R5/R6. A schematic example of the electrode and pipette placements relative to important anatomical markers is shown in Figure 1A. The correct location of plasmid injection is confirmed 24 h after electroporation and shown in Figure 1B. The targeted injection of plas...
In ovo electroporation is a method of expressing or knocking down genes of interest in order to analyze in vivo gene function8,9. In the chicken embryo, it is an innovative method for expressing plasmid-encoded genes into different auditory brainstem regions8. To ensure optimal expression, several critical steps are required. First, only inject embryos whose otocysts are clearly visible. If otocysts are not visible the em...
The authors have nothing to disclose.
We would like to thank Drs. Leslayann Schecterson, Yuan Wang, Andres Barria and Mrs. Ximena Optiz-Araya for initial assistance with protocol set-up and for providing plasmids. This work was supported by NIH/NIDCD grant DC013841 (JTS).
Name | Company | Catalog Number | Comments |
Fertilized white leghorn chicken eggs | Sunnyside Inc. (Beaver Dam, WI) | ||
Picospritzer | Parker Hannifin | 052-0500-900 | Picospritzer III, single or dual channel |
Current/voltage stimulator | Grass Technologies | SD9 | SD9 |
Microfil syringe needles | World Precision Instruments | MF28G67-5 | 28 Gauge, 67 mm Long, (Pack of 5) |
Electrode holder | Warner Instruments | 64-1280 | MP Series: Non-Electrical Pressure Applications |
Stimulating microelectrode | FHC | PBSA1075 | PBSA1075 |
Air tank/regulator | NU Laboratory Services | Air dry 300 CF | |
Fast green | Sigma Aldrich | F7258-25G | F7258-25G |
Clear plastic tape | Scotch | 191 | |
Doxycycline hyclate | Sigma Aldrich | D9891-1G | |
Egg refrigerator | Vissani Wine Refrigerator | 13.3-16.1° C (56-61° F) | |
Incubator | Hova-Bator | 37.8° C (100° F), ~50% humidity | |
Dissection scope | Zeiss | 4.35E+15 | SteREO Discovery, V8 Microscope, 50.4X |
Cold-light source | Zeiss | 4.36E+15 | CL6000 LED |
Micromanipulators | Narishige Japan | Model: MM-3 | 2 Micromanipulators |
Capillary tubes | Sutter Instrument | BF150-86-10 | Thick-walled borosilicate (dimensions) |
Syringes | 1 mL, 3 mL | ||
Needles | BD Precision Glide | 27 G x 1 1/4, 19 G x 1 1/2 | |
Forceps | Stoelting | No. 5 Super Fine Dumont | |
Egg holder | Custom Made | Clay base works as well | |
Micropipette puller | Sutter Instrument | Model P-97 | |
Syringe filter | Ultra Cruz | sc-358811 | PVDF 0.22 μm |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved