JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Characterizing the function of odorant receptors serves an indispensable part in the deorphanization process. We describe a method to measure the activation of odorant receptors in real time using a cAMP assay.

Abstract

The enormous sizes of the mammalian odorant receptor (OR) families present difficulties to find their cognate ligands among numerous volatile chemicals. To efficiently and accurately deorphanize ORs, we combine the use of a heterologous cell line to express mammalian ORs and a genetically modified biosensor plasmid to measure cAMP production downstream of OR activation in real time. This assay can be used to screen odorants against ORs and vice versa. Positive odorant-receptor interactions from the screens can be subsequently confirmed by testing against various odor concentrations, generating concentration-response curves. Here we used this method to perform a high-throughput screening of an odorous compound against a human OR library expressed in Hana3A cells and confirmed that the positively-responding receptor is the cognate receptor for the compound of interest. We found this high-throughput detection method to be efficient and reliable in assessing OR activation and our data provide an example of its potential use in OR functional studies.

Introduction

The sense of smell plays an important role in animals' survival as they rely on their olfactory abilities to obtain food, avoid predators and danger, distinguish species, and select mate1,2. The realization of these functions depends on the odorant receptors (ORs), which are individually expressed at the ciliary surface of olfactory sensory neurons (OSNs) located in the olfactory epithelium (OE). ORs constitute the largest family of the G-protein coupled receptor (GPCR) superfamily with approximately 400 and 1200 diverse OR genes in human and mouse, respectively3,4,5. ORs activated by odorants lead to increased intracellular cAMP levels via the sequential activation of olfactory G-protein (Golf) and type III adenylyl cyclase (ACIII). The resulting increased level of intracellular cAMP could function as a second messenger, which opens the nucleotide-gated channel on the cell surface, triggering influx of cations including Ca2+ and action potentials, and ultimately initiating neuro-potential transmission and olfactory perception. The process of detecting and discriminating a large number of odorants by ORs is regarded as the first step of olfactory perception6,7.

Since Buck and Axel8 first successfully cloned odorant receptors and elucidated the mechanism of olfactory perception initiated by ORs, deorphanization of the OR family became one of the hotspots in this field. Various in vivo, ex vivo and in vitro methods to measure OR activation have been reported9,10,11,12. A traditional method that used Ca2+ imaging followed by single-cell RT-PCR on OSNs enabled the identification of different ORs to aliphatic odorants13,14,15. More recently, the advent of large-scale transcriptome analyses promoted the development of more high-throughput in vivo methods. The Kentucky assay identified eugenol- and muscone-responsive mouse ORs with the use of the S100a5-tauGFP reporter mouse strain and microarray analysis9. Based on the decrease in OR mRNA levels after odorant exposure, the DREAM technology employed a transcriptomic approach to determine OR activation profiles in both vertebrate and non-vertebrate species16. Similarly, given the phosphorylation of S6 in neuronal activations,the Matsunami group sequenced mRNAs from phosphorylated ribosome immunoprecipitations to identify responsive ORs12. Finally, the Feinstein group reported super sniffer mice that could serve as a platform to study odor coding in vivo, known as the MouSensor technology17.

In the in vitro realm, the challenge of culturing OSNs makes a heterologous expression system that mimics OR functional expression in vivo an ideal solution to conduct large-scale screening of odorous chemicals for ORs. Nevertheless, since cultured cell lines of non-olfactory origins differ from native OSNs, OR proteins are retained in the endoplasmic reticulum and unable to traffic to the plasma membrane, resulting in OR degradation and loss of receptor function18,19. To solve this problem, extensive works have been made to replicate OR functional expression on the cell membrane in heterologous cell lines. Krautwurst et al. first attached the first 20 amino acids of rhodopsin (Rho-tag) to the N-terminal of OR protein and this promoted the cell-surface expression of some ORs in human embryonic kidney (HEK) cells20. By conducting a serial analysis of gene expression (SAGE) library analysis from single OSNs, Saito et al. first cloned the receptor-transporting protein (RTP) family members, RTP1 and RTP2, and the receptor expression enhancer protein 1 (REEP1) that facilitated OR trafficking to the cell membrane and enhanced odorant-mediated responses of ORs in HEK293T cells21. Based on these findings, the Matsunami group successfully established the Hana3A cell line, stably transfected with RTP1, RTP2, REEP1, and Gαolf in HEK293T, and transiently transfected with Rho-tagged ORs, for efficient OR functional expression. Subsequent studies revealed 1) a shorter form of RTP1, RTP1S, that could more robustly promote OR function than the original RTP1 protein and 2) the type 3 muscarinic acetylcholine receptor (M3R) that could enhance OR activity via inhibition of β-arrestin-2 recruitment, both of which were introduced to the heterologous expression system to optimize experimental output22,23.

Several detection methods have been used to quantify receptor activation in heterologous systems. The secreted placental alkaline phosphatase (SEAP) assay works with a reporter enzyme transcriptionally regulated by cAMP response elements (CREs), making it an attractive option for assessing OR activation. The fluorescence is readily detected in a sample of the culture medium after the incubation with SEAP detection reagent24. Using this method, the functions of ORs as well as a secondary class of chemosensory receptors expressed in the OE-the trace amine-associated receptors (TAARs) have been characterized25,26,27. Another common method, the luciferase assay, uses a firefly luciferase reporter gene under the control of the cAMP response element (CRE). Measuring luminescence generated by luciferase production provides an efficient and robust means of quantifying OR activation10,11,28.

Real-time cAMP assays have also been widely used in dynamically monitoring the function of heterologous or endogenous GPCRs. One example of such advanced assays takes advantage of a genetically encoded biosensor variant, which possesses a cAMP-binding domain fused to a mutant form of luciferase. When cAMP binds, the conformational change leads to the activation of luciferase, luminescence from which can then be measured with a chemiluminescence reader29,30. The real-time cAMP technology has been reported suitable for the de-orphaning of human odorant receptors in HEK293 and NxG 108CC15 cells31,32,33, as well as in the HEK293T-derived Hana3A cells34,35. The Krautwurst group also described in detail the real-time cAMP technology to be suitable for bi-directional large-scale OR screening approaches32,33.

Here we describe a protocol for measuring OR activation using a real-time cAMP assay in Hana3A cells. In this protocol, the luminescence of pre-equilibrated live cells is kinetically measured for 30 min following treatment with specific volatile compounds, representing a more efficient and accurate analysis of OR activation that are less susceptible to artifacts that occur in the cellular environment with prolonged time and odor-induced cell toxicities. This real-time measurement allows for a large-scale screening of both ORs and ligands, as well as characterization of specific OR-ligand pairs of interest. Using this method, we successfully identified OR5AN1 as the receptor for the musk compound muscone by performing a screening against 379 human ORs and subsequently confirming the positive screening result.

Protocol

1. Culturing and Maintenance of Hana3A Cells

  1. Maintain cells in 10 mL of minimum essential medium (MEM) with 10% fetal bovine serum (FBS), 100 µg/mL penicillin-streptomycin, and 1.25 µg/mL amphotericin B in a 100-mm cell culture dish in a 37 °C cell culture incubator with 5% CO2. With every other passage, add 1 µg/mL puromycin to maintain stable transfection of plasmids (See Introduction).
    NOTE: Perform all steps involving cell culture in a class II biological safety cabinet to ensure sterile environment.
  2. Subculture at a ratio of 10-20% in 100-mm dishes every 2-3 days.

2. Plating Cells for Transfection

  1. Observe the Hana3A cells under a phase-contrast microscope to ensure cell viability and to estimate confluence.
  2. Aspirate all medium from the cell culture dish.
  3. Wash cells by adding 10 mL of phosphate-buffered saline (PBS) onto the plate, swirling the dish, and aspirating the PBS.
  4. Add 3 mL of 0.05% trypsin-ethylene diamine tetraacetic acid (EDTA) onto the plate. Mix for 1 min or until all cells are afloat.
    NOTE: Observe the progress of cells detaching from the bottom of the plate under the microscope as necessary.
  5. Inactivate trypsin by adding 5 mL of MEM with 10% FBS and pipette up and down to break up chunks of cell mass.
    NOTE: For plating prior to transfection, the medium used should not contain antibiotics. Addition of antibiotics may decrease transfection efficiency.
  6. Transfer an appropriate amount of cells to a 15-mLl tube depending on the number of plates to be transfected. For each 96-well plate, plate 2 x 106 cells, or approximately 1/5 of a 100% confluent 100 mm dish, giving a cell count of 2 x 104 cells per well or a density of approximately 15-30% confluence per well. Centrifuge tubes at 200 x g for 5 min and aspirate the supernatant without disturbing the cell pellet.
    NOTE: Calculate the correct amount of cells to be plated onto 96-well plates to avoid overgrowing or undergrowing cells prior to stimulation.
  7. Add an appropriate amount of MEM with 10% FBS into the 15-mL tube and pipette up and down to break up chunks of the cell mass. For each 96-well plate, resuspend the cells with 6 mL of MEM with 10% FBS.
    NOTE: Be careful not to generate air bubbles in the tube.
  8. Add the suspended cells into a reservoir. Using a multichannel pipette, pipette 50 µL of cells onto each well of a 96-well plate. Incubate overnight at 37 °C with 5% CO2.

3. Transfection of Plasmids

  1. Prior to transfection, observe the plated cells to ensure a proper confluence of approximately 30-50% per well under a phase-contrast microscope and return to the incubator.
  2. Prepare in advance the Rho-tagged OR construct11,21,22,28, the accessory factor constructs (RTP1S22,36 and M3R23), and the biosensor variant construct29,30 by miniprep. Quantify the DNA concentration by a spectrophotometer and adjust plasmid DNA concentrations (e.g., to 100 ng/µL) with distilled water as necessary.
  3. Preparation of the Transfection Mixtures
    1. Prepare a plasmid transfection mixture in 500 µL of MEM for each 96-well plate according to Table 1.
      NOTE: When different ORs are tested on the same 96-well plate, the volume of the transfection mixture and the amount of plasmid DNA added must be adapted in function of the number of transfected wells with a given OR.
    2. Prepare a transfection mixture in a tube with 18 µL of lipid-mediated transfection reagent in 500 µL of MEM.
  4. Mix the plasmid mixture with the transfection mixture by pipetting up and down. Incubate at room temperature for 15 min.
  5. Stop the reaction by adding 5 mL of MEM with 10% FBS.
  6. Spread out a thick layer of sterile paper towels in the cell culture hood. Take a 96-well plate with cells from the incubator. Gently and repeatedly tap the plate upside-down on the pile of paper towel so that the medium is completely absorbed by the paper towel.
    NOTE: Do not forcefully or abruptly tap the plate as one could lose cells.
  7. Transfer 50 µL of the combined transfection mixture to each well of the 96-well plate and incubate overnight for 18-24 h at 37 °C with 5% CO2.
    NOTE: A time-managed transfection and stimulation schedule should precede the measurement when more than one 96-well plate are tested in one experiment in order to have all plates measured after the same transfection time and stimulus exposure time.

4. Stimulation and Measuring OR Activity Using the Real-Time cAMP Assay

  1. Observe the transfected cells under a phase-contrast microscope to ensure a proper confluence of 50-80% per well and return to the incubator.
  2. Prepare the stimulation medium by adding 10 mM hydroxyethyl piperazineethanesulfonic acid (HEPES) and 5 mM glucose to Hank's Balanced Salt Solution (HBSS).
  3. Thaw the real-time cAMP assay substrate reagent aliquots on ice. Store substrate reagent at -80 °C at 55 µL per tube in PCR tubes. Use 1 tube per plate.
  4. Prepare 2% equilibration solution by mixing 55 µL of the substrate reagent and 2750 µL HBSS/HEPES/glucose solution.
  5. Spread out a thick layer of paper towels on the bench. Gently and repeatedly tap the plate upside-down on the paper towel so that the transfection medium is completely absorbed by the paper towel.
  6. Wash the cells by pipetting 50 µL of HBSS/HEPES/glucose solution to each well.
  7. Gently and repeatedly tap out the HBSS/HEPES/glucose solution from the 96-well plate.
  8. Pipette 25 µL of 2% equilibration solution to each well and incubate at room temperature in dark for 2 h.
  9. Prepare in advance 1 M odorant stock solutions in DMSO and store at -20 °C until used.
  10. Prior to the end of the incubation time, dilute the odorant stock solutions to working concentrations in HBSS/HEPES/glucose stimulation medium.
    NOTE: The concentrations of the odorant dilutions prepared in this step should be doubled to yield the correct final concentrations in each well.
  11. Using a chemiluminescence plate reader and before odorant addition, measure the basal luminescence level of the plate for 2 consecutive times at a rate of 1000 ms per well34.
  12. Quickly remove the plate from the plate reader and add 25 µL odorant dilutions to each well and immediately start continuous luminescence measurement of all wells for 20 cycles within 30 min.
    NOTE: Pipette carefully to avoid contaminating neighboring wells when using different odorants and/or different concentrations of the same odorants in the same plate.

5. Data Analysis

  1. Export the data from the chemiluminescence plate reader software.
  2. Calculate normalized OR response for each time point using the formula
    (luminescenceN – luminescencebasal)/(luminescencehighest – luminescencebasal)
    where N = luminescence value of a certain well; basal = average luminescence value of the two basal luminescence values; highest = highest luminescence value of a plate or a set of plates.
    NOTE: Depending on the purpose of the experiment, alternative graphical representations can be adopted. For example, for screening assays (see Figure 1) and for generating concentration-response curves, the luminescence value of a certain well at a desired time point during the kinetic measurement, such as the maximum value or the final value, can be used.

Results

Muscone is the main aromatic component from natural musk. Recent studies identified OR5AN1 as a human receptor for muscone and other macrocyclic musk compounds based on homology to the mouse OR, MOR215-1, cloned from muscone-responsive glomeruli in behaving mice37,38. By screening the human OR repertoire, our group and the Touhara group also identified OR5AN1 as a major receptor for two macrocyclic musk compounds, cyclopentadecano...

Discussion

Accurately measuring an OR's activation upon exposure to a certain odorant is the first step in deciphering the coding of olfactory information. The experiments shown in this study represent an example of how one can identify, using an in vitro OR expression system, responsive ORs among the human OR repertoire for the odorous chemical of interest and subsequently characterizing the receptor pharmacology using various concentrations of the chemical. Our results confirm OR5AN1 as a bona fide receptor ...

Disclosures

The authors have nothing to disclose.

Acknowledgements

The work was supported by the Chinese National Science Foundation (31070972), Science and Technology Commission of Shanghai Municipality (16ZR1418300), the Program for Innovative Research Team of Shanghai Municipal Education Commission, the Shanghai Eastern Scholar Program (J50201), and the National Basic Research Program of China (2012CB910401).

Materials

NameCompanyCatalog NumberComments
Amphotericin BSigmaA2942
DMSOSigmaD2650
FBSGibco10099-141
GloSensor cAMP reagentPromegaE1290
pGloSensor-20F cAMP plasmidPromegaE1171
Hana3A cellsavailable from authors upon request
HBSS, without calcium or magnesiumGIBCO14175095
HEPESHycloneSH30237
Lipofectamine2000Invitrogen11668-019
M3R plasmidcloned into a mammalian expression vector such as pCI
MEM, with EBSS and L-glutamineHycloneSH30024
MusconeSanta Cruzsc-200528
Musk tibeteneSigma-AldrichS359165
OR plasmidscloned with a Rho-tag into a mammalian expression vector such as pCI
PBS, without calcium or magnesiumCellgro21-040-CV
Penicillin-streptomycinHycloneSV30010
Plasmid miniprep kitTiangenDP103-03
PuromycinSigmaP8833
RTP1S plasmidcloned into a mammalian expression vector such as pCI
Trypsin-EDTAHycloneSH30236
0.2-mL PCR tubeAxygenPCR-02-C
1.5-mL Eppendorf tubeEppendorf
15-mL 17 mm x 120 mm conical tubeBD Falcon352096
8-well and/or 12-well multichannel pipetmanEppendorf
96-well flat-bottomed white cell culture plateGreiner655098
100 mm x 20 mm cell culture dishBD Falcon353003
Class II biological safety cabinet with laminar flow
Cell culture incubator, with 5% CO2
Centrifuge, with swinging bucket rotor for 15-ml conical tubes
Infinite F200 plate readerTecan
Phase-contrast microscope with x10 and x20 objectives
Spectrophotometer
Sterile reagent reservoirs for multichannel distribution
Sterile paper towel

References

  1. Malakoff, D. Following the scent of avian olfaction. Science. 286 (5440), 704-705 (1999).
  2. Zippel, H. P. The ecology of vertebrate olfaction: D.M. Stoddart. Chapman and Hall, Andover, Great Britain, 1980. £15.00, 234 pp. ISBN 0-412-21820-8. Behav Processes. 7 (2), 198-199 (1982).
  3. Dryer, L., Berghard, A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol Sci. 20 (10), 413-417 (1999).
  4. Zhang, X., Firestein, S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci. 5 (2), 124-133 (2002).
  5. Glusman, G., Yanai, I., Rubin, I., Lancet, D. The complete human olfactory subgenome. Genome Res. 11 (5), 685-702 (2001).
  6. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci. 5 (4), 263-278 (2004).
  7. Reed, R. R. After the holy grail: establishing a molecular basis for Mammalian olfaction. Cell. 116 (2), 329-336 (2004).
  8. Buck, L., Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 65 (1), 175-187 (1991).
  9. McClintock, T. S., et al. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors. J Neurosci. 34 (47), 15669-15678 (2014).
  10. Trimmer, C., Snyder, L. L., Mainland, J. D. High-throughput analysis of mammalian olfactory receptors: measurement of receptor activation via luciferase activity. J. Vis. Exp. (88), e51640 (2014).
  11. Saito, H., Chi, Q., Zhuang, H., Matsunami, H., Mainland, J. D. Odor coding by a Mammalian receptor repertoire. Sci Signal. 2 (60), ra9 (2009).
  12. Jiang, Y., et al. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat Neurosci. 18 (10), 1446-1454 (2015).
  13. Malnic, B., Hirono, J., Sato, T., Buck, L. B. Combinatorial receptor codes for odors. Cell. 96 (5), 713-723 (1999).
  14. Touhara, K., et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci U S A. 96 (7), 4040-4045 (1999).
  15. Kajiya, K., et al. Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci. 21 (16), 6018-6025 (2001).
  16. von der Weid, B., et al. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat Neurosci. 18 (10), 1455-1463 (2015).
  17. D'Hulst, C., et al. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding. Cell Rep. 16 (4), 1115-1125 (2016).
  18. Lu, M., Echeverri, F., Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic. 4 (6), 416-433 (2003).
  19. McClintock, T. S., et al. Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Brain Res Mol Brain Res. 48 (2), 270-278 (1997).
  20. Krautwurst, D., Yau, K. W., Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell. 95 (7), 917-926 (1998).
  21. Saito, H., Kubota, M., Roberts, R. W., Chi, Q., Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell. 119 (5), 679-691 (2004).
  22. Zhuang, H., Matsunami, H. Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem. 282 (20), 15284-15293 (2007).
  23. Li, Y. R., Matsunami, H. Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci Signal. 4 (155), ra1 (2011).
  24. Durocher, Y., et al. A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem. 284 (2), 316-326 (2000).
  25. Liberles, S. D., Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature. 442 (7103), 645-650 (2006).
  26. Saraiva, L. R., et al. Combinatorial effects of odorants on mouse behavior. Proc Natl Acad Sci U S A. 113 (23), E3300-E3306 (2016).
  27. Nara, K., Saraiva, L. R., Ye, X., Buck, L. B. A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci. 31 (25), 9179-9191 (2011).
  28. Zhuang, H., Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc. 3 (9), 1402-1413 (2008).
  29. Fan, F., et al. Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol. 3 (6), 346-351 (2008).
  30. Fan, B. F., Wood, K. V. Live-Cell Luminescent Assays for GPCR Studies: Combination of Sensitive Detection and Real-Time Analysis Expands Applications. Genetic Engineering & Biotechnology News. 29, 30-31 (2009).
  31. Geithe, C., Andersen, G., Malki, A., Krautwurst, D. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors. J Agric Food Chem. 63 (43), 9410-9420 (2015).
  32. Noe, F., et al. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol. Chem Senses. 42 (3), 195-210 (2016).
  33. Geithe, C., Noe, F., Kreissl, J., Krautwurst, D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem Senses. 42 (3), 181-193 (2016).
  34. Duan, X., et al. Crucial role of copper in detection of metal-coordinating odorants. Proc Natl Acad Sci U S A. 109 (9), 3492-3497 (2012).
  35. Li, S., et al. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. J Am Chem Soc. , (2016).
  36. Wu, L., Pan, Y., Chen, G. Q., Matsunami, H., Zhuang, H. Receptor-transporting protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J Biol Chem. 287 (26), 22287-22294 (2012).
  37. Shirasu, M., et al. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors. Neuron. 81 (1), 165-178 (2014).
  38. Block, E., et al. Implausibility of the vibrational theory of olfaction. Proc Natl Acad Sci U S A. 112 (21), E2766-E2774 (2015).
  39. Sato-Akuhara, N., et al. Ligand Specificity and Evolution of Mammalian Musk Odor Receptors: Effect of Single Receptor Deletion on Odor Detection. J Neurosci. 36 (16), 4482-4491 (2016).
  40. Gane, S., et al. Molecular vibration-sensing component in human olfaction. PLoS One. 8 (1), e55780 (2013).
  41. Young, J. M., et al. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet. 11 (5), 535-546 (2002).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Odorant ReceptorCAMP AssayLive cell MeasurementHigh throughput ScreeningHeterologous Expression SystemHana3A CellsTransfectionOdorant to receptor ActivationPhase contrast MicroscopyCell CultureTrypsinizationCell Counting96 well PlateIncubationPlasmid ConstructsTransfection Mixture

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved