A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Characterizing the function of odorant receptors serves an indispensable part in the deorphanization process. We describe a method to measure the activation of odorant receptors in real time using a cAMP assay.
The enormous sizes of the mammalian odorant receptor (OR) families present difficulties to find their cognate ligands among numerous volatile chemicals. To efficiently and accurately deorphanize ORs, we combine the use of a heterologous cell line to express mammalian ORs and a genetically modified biosensor plasmid to measure cAMP production downstream of OR activation in real time. This assay can be used to screen odorants against ORs and vice versa. Positive odorant-receptor interactions from the screens can be subsequently confirmed by testing against various odor concentrations, generating concentration-response curves. Here we used this method to perform a high-throughput screening of an odorous compound against a human OR library expressed in Hana3A cells and confirmed that the positively-responding receptor is the cognate receptor for the compound of interest. We found this high-throughput detection method to be efficient and reliable in assessing OR activation and our data provide an example of its potential use in OR functional studies.
The sense of smell plays an important role in animals' survival as they rely on their olfactory abilities to obtain food, avoid predators and danger, distinguish species, and select mate1,2. The realization of these functions depends on the odorant receptors (ORs), which are individually expressed at the ciliary surface of olfactory sensory neurons (OSNs) located in the olfactory epithelium (OE). ORs constitute the largest family of the G-protein coupled receptor (GPCR) superfamily with approximately 400 and 1200 diverse OR genes in human and mouse, respectively3,4,5. ORs activated by odorants lead to increased intracellular cAMP levels via the sequential activation of olfactory G-protein (Golf) and type III adenylyl cyclase (ACIII). The resulting increased level of intracellular cAMP could function as a second messenger, which opens the nucleotide-gated channel on the cell surface, triggering influx of cations including Ca2+ and action potentials, and ultimately initiating neuro-potential transmission and olfactory perception. The process of detecting and discriminating a large number of odorants by ORs is regarded as the first step of olfactory perception6,7.
Since Buck and Axel8 first successfully cloned odorant receptors and elucidated the mechanism of olfactory perception initiated by ORs, deorphanization of the OR family became one of the hotspots in this field. Various in vivo, ex vivo and in vitro methods to measure OR activation have been reported9,10,11,12. A traditional method that used Ca2+ imaging followed by single-cell RT-PCR on OSNs enabled the identification of different ORs to aliphatic odorants13,14,15. More recently, the advent of large-scale transcriptome analyses promoted the development of more high-throughput in vivo methods. The Kentucky assay identified eugenol- and muscone-responsive mouse ORs with the use of the S100a5-tauGFP reporter mouse strain and microarray analysis9. Based on the decrease in OR mRNA levels after odorant exposure, the DREAM technology employed a transcriptomic approach to determine OR activation profiles in both vertebrate and non-vertebrate species16. Similarly, given the phosphorylation of S6 in neuronal activations,the Matsunami group sequenced mRNAs from phosphorylated ribosome immunoprecipitations to identify responsive ORs12. Finally, the Feinstein group reported super sniffer mice that could serve as a platform to study odor coding in vivo, known as the MouSensor technology17.
In the in vitro realm, the challenge of culturing OSNs makes a heterologous expression system that mimics OR functional expression in vivo an ideal solution to conduct large-scale screening of odorous chemicals for ORs. Nevertheless, since cultured cell lines of non-olfactory origins differ from native OSNs, OR proteins are retained in the endoplasmic reticulum and unable to traffic to the plasma membrane, resulting in OR degradation and loss of receptor function18,19. To solve this problem, extensive works have been made to replicate OR functional expression on the cell membrane in heterologous cell lines. Krautwurst et al. first attached the first 20 amino acids of rhodopsin (Rho-tag) to the N-terminal of OR protein and this promoted the cell-surface expression of some ORs in human embryonic kidney (HEK) cells20. By conducting a serial analysis of gene expression (SAGE) library analysis from single OSNs, Saito et al. first cloned the receptor-transporting protein (RTP) family members, RTP1 and RTP2, and the receptor expression enhancer protein 1 (REEP1) that facilitated OR trafficking to the cell membrane and enhanced odorant-mediated responses of ORs in HEK293T cells21. Based on these findings, the Matsunami group successfully established the Hana3A cell line, stably transfected with RTP1, RTP2, REEP1, and Gαolf in HEK293T, and transiently transfected with Rho-tagged ORs, for efficient OR functional expression. Subsequent studies revealed 1) a shorter form of RTP1, RTP1S, that could more robustly promote OR function than the original RTP1 protein and 2) the type 3 muscarinic acetylcholine receptor (M3R) that could enhance OR activity via inhibition of β-arrestin-2 recruitment, both of which were introduced to the heterologous expression system to optimize experimental output22,23.
Several detection methods have been used to quantify receptor activation in heterologous systems. The secreted placental alkaline phosphatase (SEAP) assay works with a reporter enzyme transcriptionally regulated by cAMP response elements (CREs), making it an attractive option for assessing OR activation. The fluorescence is readily detected in a sample of the culture medium after the incubation with SEAP detection reagent24. Using this method, the functions of ORs as well as a secondary class of chemosensory receptors expressed in the OE-the trace amine-associated receptors (TAARs) have been characterized25,26,27. Another common method, the luciferase assay, uses a firefly luciferase reporter gene under the control of the cAMP response element (CRE). Measuring luminescence generated by luciferase production provides an efficient and robust means of quantifying OR activation10,11,28.
Real-time cAMP assays have also been widely used in dynamically monitoring the function of heterologous or endogenous GPCRs. One example of such advanced assays takes advantage of a genetically encoded biosensor variant, which possesses a cAMP-binding domain fused to a mutant form of luciferase. When cAMP binds, the conformational change leads to the activation of luciferase, luminescence from which can then be measured with a chemiluminescence reader29,30. The real-time cAMP technology has been reported suitable for the de-orphaning of human odorant receptors in HEK293 and NxG 108CC15 cells31,32,33, as well as in the HEK293T-derived Hana3A cells34,35. The Krautwurst group also described in detail the real-time cAMP technology to be suitable for bi-directional large-scale OR screening approaches32,33.
Here we describe a protocol for measuring OR activation using a real-time cAMP assay in Hana3A cells. In this protocol, the luminescence of pre-equilibrated live cells is kinetically measured for 30 min following treatment with specific volatile compounds, representing a more efficient and accurate analysis of OR activation that are less susceptible to artifacts that occur in the cellular environment with prolonged time and odor-induced cell toxicities. This real-time measurement allows for a large-scale screening of both ORs and ligands, as well as characterization of specific OR-ligand pairs of interest. Using this method, we successfully identified OR5AN1 as the receptor for the musk compound muscone by performing a screening against 379 human ORs and subsequently confirming the positive screening result.
1. Culturing and Maintenance of Hana3A Cells
2. Plating Cells for Transfection
3. Transfection of Plasmids
4. Stimulation and Measuring OR Activity Using the Real-Time cAMP Assay
5. Data Analysis
Muscone is the main aromatic component from natural musk. Recent studies identified OR5AN1 as a human receptor for muscone and other macrocyclic musk compounds based on homology to the mouse OR, MOR215-1, cloned from muscone-responsive glomeruli in behaving mice37,38. By screening the human OR repertoire, our group and the Touhara group also identified OR5AN1 as a major receptor for two macrocyclic musk compounds, cyclopentadecano...
Accurately measuring an OR's activation upon exposure to a certain odorant is the first step in deciphering the coding of olfactory information. The experiments shown in this study represent an example of how one can identify, using an in vitro OR expression system, responsive ORs among the human OR repertoire for the odorous chemical of interest and subsequently characterizing the receptor pharmacology using various concentrations of the chemical. Our results confirm OR5AN1 as a bona fide receptor ...
The authors have nothing to disclose.
The work was supported by the Chinese National Science Foundation (31070972), Science and Technology Commission of Shanghai Municipality (16ZR1418300), the Program for Innovative Research Team of Shanghai Municipal Education Commission, the Shanghai Eastern Scholar Program (J50201), and the National Basic Research Program of China (2012CB910401).
Name | Company | Catalog Number | Comments |
Amphotericin B | Sigma | A2942 | |
DMSO | Sigma | D2650 | |
FBS | Gibco | 10099-141 | |
GloSensor cAMP reagent | Promega | E1290 | |
pGloSensor-20F cAMP plasmid | Promega | E1171 | |
Hana3A cells | available from authors upon request | ||
HBSS, without calcium or magnesium | GIBCO | 14175095 | |
HEPES | Hyclone | SH30237 | |
Lipofectamine2000 | Invitrogen | 11668-019 | |
M3R plasmid | cloned into a mammalian expression vector such as pCI | ||
MEM, with EBSS and L-glutamine | Hyclone | SH30024 | |
Muscone | Santa Cruz | sc-200528 | |
Musk tibetene | Sigma-Aldrich | S359165 | |
OR plasmids | cloned with a Rho-tag into a mammalian expression vector such as pCI | ||
PBS, without calcium or magnesium | Cellgro | 21-040-CV | |
Penicillin-streptomycin | Hyclone | SV30010 | |
Plasmid miniprep kit | Tiangen | DP103-03 | |
Puromycin | Sigma | P8833 | |
RTP1S plasmid | cloned into a mammalian expression vector such as pCI | ||
Trypsin-EDTA | Hyclone | SH30236 | |
0.2-mL PCR tube | Axygen | PCR-02-C | |
1.5-mL Eppendorf tube | Eppendorf | ||
15-mL 17 mm x 120 mm conical tube | BD Falcon | 352096 | |
8-well and/or 12-well multichannel pipetman | Eppendorf | ||
96-well flat-bottomed white cell culture plate | Greiner | 655098 | |
100 mm x 20 mm cell culture dish | BD Falcon | 353003 | |
Class II biological safety cabinet with laminar flow | |||
Cell culture incubator, with 5% CO2 | |||
Centrifuge, with swinging bucket rotor for 15-ml conical tubes | |||
Infinite F200 plate reader | Tecan | ||
Phase-contrast microscope with x10 and x20 objectives | |||
Spectrophotometer | |||
Sterile reagent reservoirs for multichannel distribution | |||
Sterile paper towel |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved