JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this protocol is to alter the penetrance of lethal skeletal mutant phenotypes in zebrafish by selective breeding. Lethal mutants cannot be grown to adulthood and bred themselves, therefore this protocol describes a method for tracking and selecting penetrance through multiple generations by progeny testing.

Abstract

Zebrafish mutant phenotypes are often incompletely penetrant, only manifesting in some mutants. Interesting phenotypes that inconsistently appear can be difficult to study, and can lead to confounding results. The protocol described here is a straightforward breeding paradigm to increase and decrease penetrance in lethal zebrafish skeletal mutants. Because lethal mutants cannot be selectively bred directly, the classic selective breeding strategy of progeny testing is employed. This method also includes protocols for Kompetitive Allele Specific PCR (KASP) genotyping zebrafish and staining larval zebrafish cartilage and bone. Applying the husbandry strategy described here can increase the penetrance of an interesting skeletal phenotype enabling more reproducible results in downstream applications. In addition, decreasing the mutant penetrance through this selective breeding strategy can reveal the developmental processes that most crucially require the function of the mutated gene. While the skeleton is specifically considered here, we propose that this methodology will be useful for all zebrafish mutant lines.

Introduction

The zebrafish is a powerful model system for understanding skeletal development. With mutant zebrafish strains, biologists can decipher gene function during skeletogenesis. However, zebrafish skeletal mutant phenotypes can present with variable penetrance1,2,3,4 which can hinder developmental and genetic analyses. The purpose of this method is threefold. First, generating zebrafish mutant lines which consistently produce severe phenotypes enables downstream developmental studies like time-lapse recording5 and transplantation6. These sorts of studies can be crippled by attempting to study phenotypes that only manifest inconsistently. Second, inbreeding zebrafish strains can decrease genetic background variation, thus promoting experimental consistency and reproducibility. For example, performing all in situ hybridization analyses on one selectively inbred strain can reduce confounding variability and strengthen conclusions. Third, generating severe and mild strains will reveal the entire phenotypic series that can result from a particular mutation.

At first glance, selective breeding of lethal mutants seems impossible. How can one breed for penetrance when the animals that are scored for selection are dead? Fortunately, methods for selective breeding by family selection, specifically progeny testing, have demonstrated effectiveness in livestock breeding programs for many years7,8. These programs are mainly used for selective breeding for traits that are only present in one sex, like milk production in cows or egg production in hens. The males of these species cannot be scored directly, but their progeny are scored and a value is then assigned to the parents. Borrowing from this strategy, the protocol presented here involves scoring the fixed and stained mutant offspring from a pair of zebrafish that are heterozygous for a mutant gene of interest. The penetrance of a phenotype in the homozygous lethal mutant offspring is assigned to the parents when deciding which individuals will produce the next generation in the line. We find that this method is an effective means of shifting penetrance in zebrafish lethal skeletal mutants1.

Similar to other studies, this selective breeding protocol takes under consideration criteria like clutch size, survival of offspring, normal development of embryos, and sex ratio9. However, these factors are all considered in the context of a mutant background with the objective of shifting the mutant penetrance. Therefore, this protocol extends previous selective breeding paradigms by offering a method to strengthen developmental mutant analyses as well as increase background homogeneity.

This protocol requires extensive genotyping, so it is important to develop a reliable, rapid genotyping protocol in advance. There are many genotyping protocols available10,11, however we find the KASP genotyping12,13,14 is faster, more cost efficient, and more reliable than methods based on restriction enzyme cleavage of amplified sequences10. Therefore, we include a KASP protocol in this work. Additionally, we focus on skeletal mutant phenotypes in this protocol and include a procedure for Alcian Blue/Alizarin Red staining modified from previous protocols15.

The method described here is a straightforward strategy for shifting lethal mutant penetrance upward or downward. While this protocol focuses on skeletal mutant phenotypes, we believe it will be a useful strategy for husbandry of all mutant zebrafish lines. In fact, the utility of this breeding strategy likely extends beyond zebrafish. We predict that this protocol can be modified to shift penetrance in a broad range of organisms. Shifting lethal penetrance by progeny testing can help push forward the progress of any developmental geneticist.

Access restricted. Please log in or start a trial to view this content.

Protocol

All experiments described in this protocol were completed in accordance and compliance with the University of Colorado and the University of Oregon Institutional Animal Care and Use Committees (IACUC).

1. Preparing the Unselected Starting Stock

  1. Identify heterozygous carriers of the mutant allele of interest by fin clip11 and genotyping a stock of full-sibling animals by a method of choice, such as KASP12,13,14. This protocol was performed with the zebrafish mef2cab1086 strain.
  2. KASP genotyping
    NOTE: Allele specific primers for KASP are designed by the company that provides the reagents (see Table of Materials). To obtain the appropriate 6-carboxyl-X-rhodamine (ROX) dye concentration for the specific real-time PCR machine visit the company website.
    1. Place the zebrafish tail tissue in 50 µL of lysis buffer (10 mM tris (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.3% non-ionic surfactant, 0.3% Octylphenyl-polyethylene glycol). Add 10 µL of 10 mg/mL Proteinase-K per well of a 96-well PCR plate and digest in a thermal cycler at 55 °C for 2 - 5 h followed by a 20 min 94 °C inactivation step. Refrigerate the lysis product after digestion. 
      NOTE: Lysis products can be successfully used for several months after preparation. When tissue was lysed using 50 mM NaOH, the KASP reactions were unsuccessful. These findings suggest that the NaOH method of genomic DNA preparation is not compatible with KASP.
    2. Quantify the genomic DNA using a spectrophotometer. Dilute the genomic DNA template using molecular biology grade water so that each reaction contains approximately 20-30 ng.
      NOTE: Quantify 4 or 5 samples, pool them, then prepare dilutions for all samples based on the average. When using this protocol for adult tail tissue, a 1:100 dilution is often sufficient. The precise quantification of DNA concentration is not required.
    3. Add 0.14 µL of the KASP primer mix and 5 µL of the KASP master mix per sample on ice into a 1.5 mL microcentrifuge tube and mix well before briefly centrifuging to collect contents at the bottom of the tube.
      NOTE: KASP master mix is heat and light sensitive, keep stock on ice and avoid direct light.
    4. Pipet 5 µL of primer/master mix solution into the wells of a 96-well optical PCR plate suitable for the real-time PCR machine being used.
    5. Pipet 5 µL of diluted (approximately 5 - 7 ng/µL) DNA template samples into each well and aspirate with a pipette to mix.
    6. Add 5 µL of nuclease-free water to 3 wells to serve as no-template controls (NTC) and add 5 µL of diluted confirmed homozygous wild type, heterozygous and homozygous mutant DNA template for positive controls.
    7. Place an optically clear film seal over the plate ensuring that the film is fully sealed on each well.
    8. Briefly centrifuge the plate at 600 x g to collect the contents at the bottom and to remove bubbles from the mix.
      NOTE: Keep the plate on ice and shield from light until ready to proceed.
    9. Use the cycling program shown in Table 1 to perform the main KASP reaction.
    10. View the resulting scatter plot produced by the analysis computer. A successful reaction will show 4 distinct groupings of points on the plot (Figure 3): three sample groupings corresponding to genotype, and one grouping of the NTCs near the origin. The positive controls should segregate with the appropriate sample grouping.
    11. If the computer program does not recognize the plot groupings as corresponding to specific genotypes, additional cycling sets may be required (Table 2). Repeat the additional program until the computer recognizes tight groupings by genotype.
    12. Export the genotyping results to a spreadsheet file for easier use and analysis.
  3. House the identified heterozygous animals together on the main water system.

2. The First Round of Progeny Scoring

  1. Pairwise cross sibling heterozygotes
    1. After the animals recover from the fin clip, set up pairwise intercrosses. Use dividers to ensure embryos are synchronous16.
    2. Collect the embryos and keep the parental pairs isolated in breeding cages.
    3. Monitor isolated adults so that aggressive fish can be separated or provided with cover (shredded fish nets work nicely). Fish should be fed and their water changed following IACUC guidelines while in static water.
  2. Embryo rearing
    1. Stage and raise the zebrafish embryos to larvae under standard conditions17.
    2. Collect phenotypically wild-type animals using a glass pipette on day 5 or 6 when the swim bladder is inflated in 75% of the clutch. Place phenotypic wild types in the nursery recording of which parents yielded them.
      Note: With mutant alleles that are recessive lethal, which is true of many skeletal mutants, homozygous mutants fail to form swim bladders18,19. Therefore, phenotypic wild types can be easily discerned from their mutant siblings based on inflated swim bladders.
  3. Alcian Blue/Alizarin Red cartilage and bone staining
    1. Anesthetize larvae that do not inflate their swim bladders using 0.17 g/L Tricaine-S in embryo media. Collect animals into 1.5 mL microcentrifuge tubes with a wide-bore glass Pasteur pipet. Add no more than 100 larvae per tube.
    2. Remove embryo water from each tube and fix animals in 1 mL of 2% paraformaldehyde in 1x PBS per tube.
      CAUTION: Aqueous PFA is combustible and will cause serious skin and eye irritation. Wear appropriate personal protective equipment such as gloves and eye protection, and wash hands thoroughly after use.
    3. Rock for 1 h; longer fixation impairs bone staining. Check the tubes regularly during this and all subsequent rocking steps to ensure no larvae have become stuck to the side or clumped in the bottom of the tube.
    4. Remove the fixative from tubes using a glass pipette, add 1 mL of 50% ethanol, and rock for 10 min.
    5. Prepare fresh staining solution by adding 20 µL of 0.5% Alizarin Red per 1 mL of Alcian premix (0.04% Alcian Blue/10 mM MgCl2/80% ethanol). Remove 50% ethanol, add 1 mL of staining solution to each tube, and rock overnight. Larvae can remain in the stain for up to 5 days.
    6. Remove the stain solution from the tubes and add 1 mL of 80% ethanol/10 mM MgCl2 solution to each tube. Rock the tubes for at least 1 h; rinsing overnight can produce a clearer Alcian Blue stain.
    7. Remove the 80% ethanol/10 mM MgCl2 solution from the tubes and add 1 mL of 50% ethanol; rock for 5 min.
    8. Remove the 50% ethanol solution from the tubes and add 1 mL of 25% ethanol and rock for 5 min.
    9. Remove the 50% ethanol solution from the tubes and add 1 mL freshly prepared 3% H2O2/0.5% KOH bleaching solution. Leave the caps open and let the tubes stand in in a micro-tube rack for approximately 10 min or until a faint brown coloration can be seen in the upper part of the solution.
      NOTE: A layer of bubbles form on top of the solution. Careful timing is required at this step, as over bleaching will result in a poor double stain.
    10. Remove the bleaching solution and add 1 mL of 25% glycerol/0.1% KOH; rock for 10 min to 1 h.
    11. Remove 25% glycerol/0.1% KOH solution from the tubes, add 1 mL of 50% glycerol/0.1% KOH solution to each tube, rock for 10 min to overnight.
    12. Remove 50% glycerol/0.1% KOH solution from the tubes and again add 50% glycerol/0.1% KOH solution to each tube. Rocking overnight will help remove air bubbles that can accumulate inside larvae. Store stained skeletal preparations at 4 °C when not being used.
  4. Phenotype scoring
    1. Score stained mutant offspring for the penetrance of the selected phenotype. In Nichols et al.1 mutants were scored for any occurrence of ectopic bone.
      Note: Because the zebrafish parents are in static water and the Alizarin Red stain can fade with time, it is important to score skeletons within a few days of completing the skeletal preparation.
    2. Penetrance is the proportion of a genotype that has a phenotype. Calculate the percent penetrance by the following formula:
      % penetrance = (mutants with phenotype)/(total number of mutants) × 100

3. Family Selection

  1. Choose two high penetrance and two low penetrance families for the next generation. In addition to penetrance, it is important to consider fecundity and vigor when choosing which families to propagate; see Discussion for more details on this.
  2. Give each parental pair a sub stock identifier: family .01, .02, etc.
  3. House parental pairs on the main system with several mixed sex 'companion' fish. Companion fish can be any zebrafish line with permanent, obvious distinguishing features, such as altered pigmentation or fin structure.
    NOTE: While many researchers successfully keep only breeding pairs in a tank, favorable results are seen by housing pairs with several companion fish. This optional step allows breeding pairs of animals to be kept in larger schools and easily retrieved so they can be repeatedly crossed as needed. Parental pairs can be crossed repeatedly to generate large full-sibling families; wait at least one week before repeat crossing the same parental pair.
  4. Cull the larval families from step 2.2.2. that were not selected for the next generation.
  5. Label the tanks containing the wild-type sibling larvae from selected families with the penetrance from their mutant siblings and raise to adulthood as normal.
  6. The next generation will have at least four full-sibling families, two for the upward line and two for the downward line.
  7. When larvae reach sexual maturity, repeat the protocol starting at step one with the new generation.

Access restricted. Please log in or start a trial to view this content.

Results

This protocol is a long-term husbandry technique useful for understanding zebrafish skeletal mutants (Figure 1). Selective breeding by progeny testing should yield a shift in overall penetrance both downward and upward in a few generations (Figure 2). In our previous work, two rounds of selective breeding drove the average penetrance downward from 17% to 3%1. Similarly, in our upward line, we shifted the a...

Access restricted. Please log in or start a trial to view this content.

Discussion

Selective Breeding Unveils Subtleties of Gene Function

Shifting mutant phenotypes to be either more or less severe by selective breeding is a straightforward way to gain new insights into gene function. When compared with standard methods of unselected breeding, the protocol presented here can yield a much more complete understanding of mutant phenotypes. Specifically, by generating strains that are severe, the full breadth of mutant phenotypes may be revealed, including some ...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Chuck Kimmel for guidance, John Dowd for help in developing this breeding strategy, Macie Walker for her work in perfecting the skeletal stain, and Charline Walker and Bonnie Ullmann for helpful zebrafish advice. This work was supported by K99/R00 DE024190 to JTN.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Paraformaldehyde, pelleted, solidTed Pella Co.18501Pelleted PFA is a safer alternative to powdered PFA
Magnesium Chloride, solidAcros Organics223210010
10x PBS, AqueousFisherBP3994
190 proof Ethanol
Alcian Blue, solidAnatech Ltd.867Must be from Anatech
Alizarin Red, solidSigmaA5533-25G
Glycerol, liquidFisherBP229 1
Hydrogen peroxide, liquidFisherBP263500
Potassium hydroxide,  solidFisherP250 500
StepOnePlus Real-time PCR MachineApplied Biosystems
MicroAmp Fast Optical 96-well Reaction Plate with Barcode (0.1 mL)Applied Biosystems4346906
Microseal 'B' sealBioRadMSB1001
KASP Master Mix, High ROXLGCKBS-1016-022https://www.lgcgroup.com/products/kasp-genotyping-chemistry/#.WOPX41UrKUk
KASP By Design Primer MixLGCKBS-2100-100
Tris HCl, solidFisherBP153 500
potassium chloride, solidFisherBP366 500
Tween-20, liquidFisherBP337 100
Nonidet P40ThermoFisher28324
Tricaine-SWestern Chemicals
Proteinase KFisherBP1700 100
T100 Thermal CyclerBioRad1861096
Controlled Drop Pasteur PipetsFisher13-678-30
NanodropThermoFisherfor DNA quantitation

References

  1. Nichols, J. T., et al. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development. 143 (23), 4430-4440 (2016).
  2. Sheehan-Rooney, K., Swartz, M. E., Zhao, F., Liu, D., Eberhart, J. K. Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR). Dis Model Mech. 6 (5), 1285-1291 (2013).
  3. Cox, S. G., et al. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest. PLoS Genet. 8 (9), e1002938(2012).
  4. DeLaurier, A., et al. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol. 385 (2), 189-199 (2014).
  5. McGurk, P. D., Ben Lovely, C., Eberhart, J. K. Analyzing Craniofacial Morphogenesis in Zebrafish Using 4D Confocal Microscopy. J Vis Exp. (83), e51190(2014).
  6. Kemp, H. A., Carmany-Rampey, A., Moens, C. Generating chimeric zebrafish embryos by transplantation. J Vis Exp. (29), e1394 (2009).
  7. Lush, J. L. Progeny test and individual performance as indicators of an animal's breeding value. J Dairy Science. 18 (1), 1-19 (1935).
  8. Lerner, I. M. Population Genetics and Animal Improvement. , Cambridge University Press. (1950).
  9. Shinya, M., Sakai, N. Generation of Highly Homogeneous Strains of Zebrafish Through Full Sib-Pair Mating. G3. 1 (5), 377-386 (2011).
  10. Neff, M. M., Neff, J. D., Chory, J., Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14 (3), 387-392 (1998).
  11. Xing, L. Y., Quist, T. S., Stevenson, T. J., Dahlem, T. J., Bonkowsky, J. L. Rapid and Efficient Zebrafish Genotyping Using PCR with High-resolution Melt Analysis. Jove-Journal of Visualized Experiments. (84), e51138(2014).
  12. He, C., Holme, J., Anthony, J. SNP genotyping: the KASP assay. Methods Mol Biol. 1145, 75-86 (2014).
  13. Semagn, K., Babu, R., Hearne, S., Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding. 33 (1), 1-14 (2014).
  14. Yuan, J., Wen, Z., Gu, C., Wang, D. Introduction of high throughput and cost effective SNP genotyping platforms in soybean. Plant Genet Genomics Biotech. 2 (1), 90-94 (2014).
  15. Walker, M. B., Kimmel, C. B. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech Histochem. 82 (1), 23-28 (2007).
  16. Nasiadka, A., Clark, M. D. Zebrafish breeding in the laboratory environment. ILAR J. 53 (2), 161-168 (2012).
  17. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev dyn. 203 (3), 253-310 (1995).
  18. Schilling, T. F., et al. Jaw and branchial arch mutants in zebrafish I: branchial arches. Development. 123, 329-344 (1996).
  19. McCune, A. R., Carlson, R. L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol Dev. 6 (4), 246-259 (2004).
  20. Mrakovčič, M., Haley, L. E. Inbreeding depression in the Zebra fish Brachydanio rerio (Hamilton Buchanan). J Fish Biol. 15 (3), 323-327 (1979).
  21. Charlesworth, D., Willis, J. H. The genetics of inbreeding depression. Nat Rev Genet. 10 (11), 783-796 (2009).
  22. McCune, A. R., et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science. 296 (5577), 2398-2401 (2002).
  23. Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 291 (5813), 293-296 (1981).
  24. Dreosti, E., Lopes, G., Kampff, A. R., Wilson, S. W. Development of social behavior in young zebrafish. Front Neural Circuits. 9, 39(2015).
  25. Eames, B. F., et al. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution. BMC Dev Bio. 13 (1), 23(2013).
  26. Nichols, J. T., Pan, L., Moens, C. B., Kimmel, C. B. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development. 140 (13), 2765-2775 (2013).
  27. Sasaki, M. M., Nichols, J. T., Kimmel, C. B. edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One. 8 (6), e67522(2013).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

ZebrafishLethal Skeletal MutantPenetranceProgeny TestingSelective BreedingRecessive LethalKASP GenotypingGenomic DNAPCR

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved