A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present a combination of laser Doppler perfusion imaging (LDPI) and laser Doppler perfusion monitoring (LDPM) to measure spinal cord local blood flows and oxygen saturation (SO2), as well as a standardized procedure for introducing spinal cord trauma on rat.
Laser Doppler flowmetry (LDF) is a noninvasive method for blood flow (BF) measurement, which makes it preferable for measuring microcirculatory alterations of the spinal cord. In this article, our goal was to use both Laser Doppler imaging and monitoring to analyze the change of BF after spinal cord injury. Both the laser Doppler image scanner and the probe/monitor were being employed to obtain each readout. The data of LDPI provided a local distribution of BF, which gave an overview of perfusion around the injury site and made it accessible for comparative analysis of BF among different locations. By intensely measuring the probing area over a period of time, a combined probe was used to simultaneously measure the BF and oxygen saturation of the spinal cord, showing overall spinal cord perfusion and oxygen supply. LDF itself has a few limitations, such as relative flux, sensitivity to movement, and biological zero signal. However, the technology has been applied in clinical and experimental study due to its simple setup and rapid measurement of BF.
The tissue of the spinal cord is highly vascularized and extremely sensitive to hypoxia induced by spinal cord injury (SCI). Our previous studies showed that blood flow of the spinal cord was significantly decreased after concussion injury1,2, which might be related to the deficit of motor function. Recent studies have shown that the integrity of blood vessels following SCI is well-correlated with the improvement of sensory motor function3. It has been reported that improved vascularity might rescue white matter, indirectly leading to improved function4. Therefore, the maintenance of post-injury spinal cord perfusion appeared to be of primary importance for preserving viability and functionality.
The effects of various treatments on perfusion after SCI have been examined by numerous investigators using a variety of techniques in experimental models of SCI5,6,7. Laser Doppler, as a well-established technique, was undoubtedly a useful method for quantifying perfusion in several animal and human studies8,9,10,11. The technique is based on measuring the Doppler shift12 induced by moving red blood cells to the illuminating light. Since the commercialization of the technique in the early 1980s, great progress has been made in laser technology, fiber optics and signal processing for measuring perfusion by laser Doppler instruments13, which made LDF into a reliable technology.
In the current study, both methods of laser Doppler measurement were applied to evaluate blood flow (BF) in the spinal cords of concussive rats. Due to the noninvasive nature of the technology and its simple setup, our protocol provides a sensitive, rapid and reliable method for BF measurements of the spinal cord. More importantly, this method allows longitudinal study of BF post concussive SCI without animal sacrifice at each time point.
Due to the ability to assess the BF of the tissue and fast changes of perfusion during stimulation, it is possible to apply this protocol to evaluate cerebral BF14,15 as well as measure other tissues such as liver16,17, skin18,19, and bowel20. In a rat model of transient occlusion of the middle cerebral artery, the laser Doppler readings were used to ensure proper reduction of the BF rate to levels that are expected in the ischemic penumbra14. In rats which have undergone critical limb ischemia (CLI) induction, laser Doppler scanning was applied to observe hind limb BF before and after the CLI procedure and during different periods after treatment21. Additionally, the bioavailability and metabolic clearance of some drugs depended on hepatic BF, which was detected by LDF16. Therefore, LDF could be widely used in experimental model, pharmacodynamic, and pharmacokinetic evaluation.
Animal protocols involving experimental animals followed guidelines established by the National Institutes of Health (NIH) and were approved by the Animal Care and Use Committee of Capital Medical University.
The procedures of introducing SCI and measuring BF of spinal cord using laser Doppler equipment described below were used in a published study1.
1. Preparation for the Surgery
2. Preparation of Rat for Surgery
3. Laminectomy and the Concussion to the Spinal Cord
NOTE: To perform laminectomy only for the sham group, follow steps 3.1 to 3.6.
4. Laser Doppler Scanning
5. Laser Doppler Monitoring
6. Sutures and Post-Operation Care
LDPI was used to measure BF in the spinal cord, which was quantified along the rostral-caudal axis of the spinal cord by extracting linear profiles (Figure 4). Figure 5A and Figure 5B represent the flux imaging of the spinal cord of the sham group and SCI group, respectively. Figure 5C and Figure 5D represent the altering BF along the rostra...
A few details should be noticed when performing this protocol. Firstly, the process of anesthesia and surgery should be carried out as quickly and elegantly as possible to minimize the introduced stress to the animal. To reduce disturbance to the results, keep the animal in a relatively peaceful and stable state. Secondly, more attention should be paid to bleeding during the measurement using laser Doppler equipment, since blood could potentially interfere with the reading. Finally, during the data recording, animals sho...
The authors have nothing to disclose.
The authors have no acknowledgements.
Name | Company | Catalog Number | Comments |
Laser Doppler Line Scanner | Moor Instruments | moorLDLS2 | |
Laser Doppler Monitor | Moor Instruments | moorVMS-LDF | |
Probe for Monitor | Moor Instruments | VP3 | Blunt needle end delivery probe |
Impactor | Precision Systems and Instrumentation | IH-0400 | |
Phenobarbital sodium | Sigma-Aldrich | P3761 | |
Buprenorphine | Sigma-Aldrich | B-908 | |
Syringe | Becton Dickinson Medica (s) Pte.Ltd | 300841 | |
Surgical suture needles with thread | Shanghai Pudong Jinhuan Medical Products Co., Ltd | 18T0329 (batch number) /4-0 | |
Scalpel | Operation instrument factory of Shanghai Medical Instrument Co., Ltd. | J11030 4# | |
Scalpel blade | Operation instrument factory of Shanghai Medical Instrument Co., Ltd. | J12130 20# | |
Ophthalmic forceps | Operation instrument factory of Shanghai Medical Instrument Co., Ltd. | JD1040 | |
Hemostatic forceps | Operation instrument factory of Shanghai Medical Instrument Co., Ltd. | J31050 | |
Benzyl penicillin sodium | North China Pharmaceutical Co., Ltd | F6072116 (batch number) | |
75% alcohol | Dezhou Anjie Gaoke disinfection products Co., Ltd | 150421R (batch number) | |
Iodine | Shandong Lierkang Medical Technology Co., Ltd | 20170102 (batch number) | |
Rat | Laboratory Animal Center, The Academy of Millitery Medical Sciences | Sprague-Dawly (rat strain) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved