A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of the protocol is to prepare keratin hydrolysate from chicken feathers by alkaline-enzymatic hydrolysis and to test whether adding keratin hydrolysate into a cosmetics ointment base improves skin barrier function (heightening hydration and diminishing transepidermal water loss). Tests are conducted on men and woman volunteers.
Keratin hydrolysates (KHs) are established standard components in hair cosmetics. Understanding the moisturizing effects of KH is advantageous for skin-care cosmetics. The goals of the protocol are: (1) to process chicken feathers into KH by alkaline-enzymatic hydrolysis and purify it by dialysis, and (2) to test if adding KH into an ointment base (OB) increases hydration of the skin and improves skin barrier function by diminishing transepidermal water loss (TEWL). During alkaline-enzymatic hydrolysis feathers are first incubated at a higher temperature in an alkaline environment and then, under mild conditions, hydrolyzed with proteolytic enzyme. The solution of KH is dialyzed, vacuum dried, and milled to a fine powder. Cosmetic formulations comprising from oil in water emulsion (O/W) containing 2, 4, and 6 weight% of KH (based on the weight of the OB) are prepared. Testing the moisturizing properties of KH is carried out on 10 men and 10 women at time intervals of 1, 2, 3, 4, 24, and 48 h. Tested formulations are spread at degreased volar forearm sites. The skin hydration of stratum corneum (SC) is assessed by measuring capacitance of the skin, which is one of the most world-wide used and simple methods. TEWL is based on measuring the quantity of water transported per a defined area and period of time from the skin. Both methods are fully non-invasive. KH makes for an excellent occlusive; depending on the addition of KH into OB, it brings about a 30% reduction in TEWL after application. KH also functions as a humectant, as it binds water from the lower layers of the epidermis to the SC; at the optimum KH addition in the OB, up to 19% rise in hydration in men and 22% rise in women occurs.
Slaughterhouses, the food industry, and the tanning industry annually produce immense amounts of solid keratin by-products – wool, feathers, bristles, hooves, claws, horns, and the like. According to latest statistical data, the total live weight of chickens, turkeys, ducks, and other slaughtered poultry in the USA is 62.5 billion pounds per year1; in the EU it is approximately 28.7 billion pounds per year. Considering that feathers make up to 8.5% of the total poultry weight, the USA alone annually produces approx. 5.3 billion pounds of waste feathers2.
Keratin is a protein exhibiting high chemical resistance because it is strongly cross-linked with disulfide bridges that render its processing difficult. Obtaining soluble products requires cleaving cross-links and possibly carrying out hydrolysis of the peptide bonds3. Cleavage of the disulfide bridges may proceed through a reaction of thiol anion according to the following pattern4,5:
Sa- + –SbSc– ↔ –Sb- + –SaSc-
With a very high pH level, hydrolysis of the disulfide bridges also appears, in accordance with the pattern6
–SS- + OH- → –S- + –SOH
Under mild conditions (pH approx. 8), even sulfitolysis takes place according to the following pattern:
–SS– + HSO3- → –SH + –SSO3-
The most economical way of degrading keratin is microbial breakdown, which is characterized by mild reaction conditions during processing and high breakdown efficiency (approx. 90%)7,8. Keratinases are produced by some bacteria isolated from soil and keratin waste9. Microbial keratinases hydrolyze rigid and strongly cross-linked keratin structures10 and the resulting KH prepared is rich in soluble proteins, with no loss in essential amino acids detected in it11.
In order to incorporate a protein in cosmetic preparations (e.g., emulsions, lotions, and gels), the requirements ensure that such proteins are soluble in water, the given systems are transparent, and that re-aggregation of the peptides is avoided due to hydrophobic interactions. Therefore, a common practice is to apply hydrolysates of proteins, such as hydrolyzed collagen, elastin, and keratin. When adding hydrolysates into cosmetic emulsions, steps are taken to ensure that the hydrolysate is first dissolved in water. In some cases, it is desirable that the protein (or the hydrolysate) is soluble in alcohol or other organic solvents12.
KH is normally featured in shampoos, conditioners, lotions, and nutritive serums for hair, as well as mascaras, nail polish, and eye make-up agents. The KH effects declared usually include forming a protective film, smoothing the hair or nail structure, heightened plasticity and appearance of the treated formation, regulating the consistency of products, and encouraging the formation of foam13,14. It has also been shown that KH reduces surface tension, hence supplementation in cosmetics can facilitate reduction in the amount of emulsifier added to stabilize creams. KH limit the effects of irritation triggered by cleaning agents (surfactants) to the skin, eyes, and hair, thus reducing any potential side effects of cleaning agents on tissue (e.g., dehydration of the skin, hardness, and decreased barrier function of the skin). The high buffering capability of hydrolysates is also exploited to stabilize the pH of cosmetics; peptides of shorter length have a greater buffering effect15,16. Although KHs have become established as standard components in hair and nail cosmetics as well as being utilized in products for skin care, studies on the moisturizing effects of KH do not appear in contemporary literature.
Alkaline-enzymatic technology has been developed for processing keratin by-products into KH, and active testing is in process on the effects of a number of cosmetic additives17,18,19,20,21,22. The advantage of two-stage alkaline-enzymatic hydrolysis using microbial proteases for chicken feathers achieves high efficiency under mild reaction conditions and the quality of KH is very high in contrast to hydrolysis employed in strong acids or alkalis. In the first stage, feathers are incubated at a higher temperature in an alkaline environment, which partially disrupts the keratin structure and swells the feathers; after adjusting the pH, the feathers are hydrolyzed with a proteolytic enzyme under mild conditions in the second stage. The dialyzed KH possesses a high content of proteins.
The purposes of the method described here are processing poultry feathers into a KH through alkaline-enzymatic hydrolysis and testing the effect of moisturizing properties of KH applied to O/W cosmetic emulsion. The moisturizing properties are investigated by instrumental non-invasive methods in vivo. The most frequent methods for measuring skin hydration and barrier function of SC include measuring electrical properties of the skin (conductance or capacitance). Different methods for investigating SC hydration include near infrared multispectral imagining method (NIM), nuclear magnetic resonance spectroscopy, optical coherence tomography, or transient thermal transfer23. Barrier function of SC correlates to the TEWL of SC and it is measured by the ventilated chamber method, unventilated chamber method, and open chamber method24.
Properties of the model formulations are determined using the Multi Probe adapter MPA 5 with three types of probes. The first one, corneometer CM 825, measures skin hydration by assessing changes in the electrical capacity of the skin's surface; the measuring capacitor shows changes in capacitance of the skin surface in corneometric units. The corneometer gives only a relative assessment of skin hydration25. For TEWL, the second probe, tewameter TM 300, is used for measuring the density gradient of water evaporation (in an open chamber instrument based on Fick's diffusion law) from the skin indirectly by the two pairs of sensors (temperature and relative humidity) indicating the quantity of water being transported per a defined area and period of time (g/m2/h). This method can detect even the slightest disruption of skin barrier function26. Skin pH is one indicator of barrier and anti-microbial function of the SC27. The acidity of the skin mantle was measured by a (third) skin PH 905 probe connected to the MPA 5 station. This specially designed probe consists of a flat-topped glass electrode for full skin contact, connected to a voltmeter. The system measures potential changes due to the activity of hydrogen cations surrounding the very thin layer of semi-solid forms measured at the top of the probe. The changes in voltage are displayed as pH28.
We present experiments divided into three sections: (1) Preparation of KH from chicken feathers by two-stage alkaline-enzymatic hydrolysis and its purification by dialysis (removing salts and low-molecular fractions), (2) Preparation of cosmetic formulations containing 2, 4, and 6% KH, and (3) Testing the properties of KH by measuring skin hydration, TEWL, and skin pH. Testing was carried out on 10 women with the mean age of 27.2 years and on 10 men with the mean age of 26.2 years. The method of selecting the volunteers and the testing itself were conducted in accordance with international ethical principles of bio-medical research utilizing human subjects29; all persons gave their informed consent prior to inclusion in the study. Before testing commenced, the volunteers were asked to complete a questionnaire on their health status. The volunteers committed to avoid applying any cosmetic product to the test sites and surrounding regions during the 24 h prior to and during the test period; furthermore, they were only permitted brief evening washes with running water.
Volunteers were recruited among employees and students of our university. The method of selecting was conducted according to "International Ethical Guidelines for Biomedical Research Involving Human Subjects. Council for International Organizations of Medical Sciences, Geneva (2002)." KH is a common cosmetic ingredient used in hair-care products (shampoos, conditioners, etc.) and hence approval from the institutional review board is not required.
1. Process Chicken Feathers into KH
2. Prepare Cosmetic Formulations with KH
NOTE: The OB used for testing was a commercial hydrophilic O/W cream base and comprised of aqua, paraffin, paraffin liquid, cetearyl alcohol, Laureth 4, sodium hydroxide, carbomer, methylparaben, and propylparaben.
Cosmetic formulation | Weight of ointment base [g] | Weight of keratin hydrolysate [g] | Total weight [g] | |||||
Ointment base | 50 | 0 | 50 | |||||
Ointment base + 2 % KH | 49 | 1 | ||||||
Ointment base + 4 % KH | 48 | 2 | ||||||
Ointment base + 6 % KH | 47 | 3 |
Table 1: Weight-in quantities of ointment base and keratin hydrolysate to prepare cosmetic formulations.
3. Test the Properties of KH by Measuring Skin Hydration, TEWL, and pH
NOTE: Perform all measurements in a conditioned room at 23 ± 2 °C and the relative humidity of 56 ± 3%.
Figure 1: Method for location of test formulations on the forearm of the left and right upper limbs. Please click here to view a larger version of this figure.
The KH prepared according to procedure presented here (see Figure 2) is yellow in color, easily soluble in water with high protein content (inorganic solids represent <2.0%); the pH of the 1.0% solution of KH is 5.3, and fulfils the requirements for cosmetic-grade hydrolysates. The yield of KH from 50 g raw material is approx. 30%. The molecular weight distribution of KH was determined by SDS-PAGE and is shown in Figure 3.
The advantage of alkaline-enzymatic hydrolysis is that it can be modified according to future applications of KH. For example, in hair-care cosmetics applications where a lightly brownish color of a product is not an obstacle, a higher temperature in the hydrolysis can be applied leading to a higher yield of KH. In addition, the longer processing time during both stages of the technological procedure significantly affects the overall process efficiency – yield of KH rises to 85%.
The fin...
The authors have nothing to disclose.
This article was written with support of the project IGA/FT/2017/007 of Tomas Bata University in Zlin.
Name | Company | Catalog Number | Comments |
Material or chemicals | |||
LIPEX 100T | Novozymes | LJP30020 | Lipex - enzyme produced by submerged fermentation of a genetically-modified microorganism, activity 100 KLU/g |
Savinase Ultra 16L | Novozymes | PXN40001 | Savinase - enzyme produced by submerged fermentation of a genetically-modified microorganism, activity 16 KNPU-S/g |
Potassium hydroxide, KOH | Sigma-Aldrich | 302510289 | Potassium hydroxide, KOH, 97,0 %, Mr 56,11 |
Phosphoric acid solution, H3PO4 | Sigma-Aldrich | W290017 | Phosphoric acid solution, H3PO4, 85 wt. % concentration in water, Mr 98,00 |
Sodium chloride physiological solution | Sigma-Aldrich | 52455 | Tablets of BioUltra NaCl physiological solution; 1 tablet in 1000 mL of water yields 0.9 % NaCl |
Sodium hydroxide, NaOH | Penta s.r.o. | 40216 | Sodium hydroxide, NaOH, 97,0 %, Mr 40,00 |
AmiFarm (Cremor base-A) | Fagron | 608425 | Hydrophilic oil in water (O/W) cream base; the composition: aqua, paraffin, paraffin liquid, cetearyl alkohol, Laureth 4, sodium hydroxide, carbomer, methylparaben, propylparaben. |
Name | Company | Catalog Number | Comments |
Equipment | |||
IKA EUROSTAR POWER control-visc stirrers | IKA-labortechnik | Z404020 | Digital laboratory stirrer, for tasks up to the high viscosity range, 230V, 1/cs |
IKA Propeller stirrer, 3-bladed | IKA-labortechnik | R 1381 | Propeller stirrer, 3-bladed, stirrer Ø: 45 mm, shaft Ø: 8 mm, shaft length: 350 mm |
Dialysis tubing closures | Sigma-Aldrich | Z371017-10EA | Dialysis tubing closures, red, size 110 mm |
Dialysis tubing cellulose membrane | Sigma-Aldrich | D9402-100FT | Dialysis tubing cellulose membrane, average flat width 76 mm (3.0 in.) |
DOMO Pot with stailess, LCD | DOMO Elektronic | DO42325PC | Preserving boiler stainless steel, 2000 W, 27-L container (diameter 37 cm, height 30 cm), temperature control 30-100 ° C, operation LCD display |
Hettich zentrifugen Universal 32 | Gemini bv | 2770 GS1R | Mid bench centrifuge, speed 18000 rpm |
LT 3 shaking device | Fischer Scientific | 6470.0002 | Orbital shaking device |
KERN 440-47N | Kern | 440-47N | Laboratory balance |
KERN 770 | Kern | 770 -N | Laboratory analytical balance |
VENTICELL 222 - Komfort | BMT, MMM Group | C 131749 | Drying oven, temperature control 30-100 ° C, air circulation control |
Vacucell 55 - EVO | BMT, MMM Group | B 050328 | Vacuum drying oven, temperature control 30-100 ° C |
PULVERISETTE 19 | Fritsch | 19.1030.00 | Universal cutting mill, rotor with V-cutting edges and fixed knives |
Multi Probe Adapter System MPA 5 | Courage & Kazaka Electronic | 10225237 | MPA 5 Station - equipment for measurement hydratation, TEWL and pH |
Skin pH-meter PH 905 probe | Courage & Kazaka Electronic | Probe to specifically measure the pH on the skin surface or the scalp | |
Corneometer CM 825 probe | Courage & Kazaka Electronic | Probe to determine the hydration level of the skin surface (Stratum corneum). | |
Tewameter TM 300 | Courage & Kazaka Electronic | Probe for the assessment of the transepidermal water loss (TEWL) | |
Heidolph RZR 2020 | Heidolph | 13-225-007-03-1 | Overhead stirrer, mechanical speed setting and stepless transmission; speed range 40-2000 rpm |
Heidolph mechanical stirrer BR 10 | Heidolph | Z336688-1EA | Blade impeller crossed stirrer |
Fagor FS 12 | Fagor | BTT-138 | Laboratory refrigerator with freezer space |
WTW bench pH/mV meter | WTW | Z313165 | High-performance bench pH and pH/conductivity meters for routine and high precision laboratory measurements in research or quality control laboratories |
Container | RPC Superfos | 13-L plastic bucket, diameter 26 cm, height 26 cm | |
Name | Company | Catalog Number | Comments |
Software | |||
Microsoft Office 2010 | Microsoft | ||
C+K software | Courage and Khazaka Electronic GmbH | MPA 5 station operating software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved