Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes using cultured Aorta-Gonad-Mesonephros for expression analyses, colony-forming units in the culture and spleen, and long-term reconstitution to determine the effect of regulatory factors and signaling pathways on hematopoietic stem cell development. This has been demonstrated as an effective system for studying hematopoietic stem cell biology and function.

Abstract

The limitation of using mouse embryos for hematopoiesis studies is the added inconvenience in operations, which is largely due to the intrauterine development of the embryo. Although genetic data from knockout (KO) mice are convincing, it is not realistic to generate KO mice for all genes as needed. In addition, performing in vivo rescue experiments to consolidate the data obtained from KO mice is not convenient. To overcome these limitations, the Aorta-Gonad-Mesonephros (AGM) explant culture was developed as an appropriate system to study hematopoietic stem cell (HSC) development. Especially for rescue experiments, it can be used to recover the impaired hematopoiesis in KO mice. By adding the appropriate chemicals into the medium, the impaired signaling can be reactivated or up-regulated pathways can be inhibited. With the use of this method, many experiments can be performed to identify the critical regulators of HSC development, including HSC related gene expression at mRNA and protein levels, colony formation ability, and reconstitution capacity. This series of experiments would be helpful in defining the underlying mechanisms essential for HSC development in mammals.

Introduction

Hematopoietic stem cells (HSCs) are tissue-specific adult stem cells that possess multilineage potential including erythroid, myeloid, and lymphoid cells as well as the ability to self-renew. Recent studies have shown that the earliest HSCs arose from a specialized endothelial population, known as hemogenic endothelium (HE), through the endothelial to hematopoietic transition (EHT) at the ventral wall of dorsal aorta1,2,3,4. Once formed in the aorta-gonad-mesonephros (AGM) region from embryonic (E) 10.5 to E12.5 in the mouse embryo, HSCs will migrate into the fetal liver for expansion and finally colonize the bone marrow to maintain adult hematopoiesis throughout an individual's life5,6. Although this has been studied for many years, the underlying mechanisms of HSC emergence and development remain incompletely understood.

Unlike in vitro fertilization and development of zebrafish embryos, intrauterine development of mouse embryos makes the study of definitive hematopoiesis during embryogenesis much more inconvenient. Although genetic experiments using knockout (KO) mice are commonly utilized, the lack of certain KO mice also limits their use in the hematopoietic research field. In addition, in vivo rescue experiments are not easily performed in KO mice. Since 1996, the AGM explant culture has been developed for hematopoietic studies by the pioneers in the field7. With the help of this culture system, ventral tissues of the AGM region have been identified to promote HSC activity, while dorsal tissues exert an opposite effect8,9. The AGM explant culture system has also been applied to determine the roles of Serotonin, Mpl, SCF, BMP, and Hedgehog signaling in HSC development10,11,12,13,14. Importantly, it is also a popular method used to rescue hematopoietic defects in mutant embryos13,15.

Protocol

All the procedures including animal subjects have been approved by the Ethical Review Committee in the Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

1. Material Preparation

  1. Sterilize the 0.65 µm filters with ultraviolet rays produced under the ultraviolet ray lamp on the clean bench for 4 h and turn the filters over after the 2 h mark.
    NOTE: When working with UV light, wear appropriate protection.
  2. Sterilize the stainless steel meshes with the autoclave sterilizer at 121 °C for 30 mins.
    NOTE: A certain height of stainless steel mesh is needed to support the filters at the air-liquid interface and this can be realized with the wire on the steel mesh (Figure 1A).
  3. Dilute Fluoxetine to a final concentration of 10 µM into the M5300 long-term culture medium and mix evenly.
    NOTE: For a six-well plate, 2 mL M5300 long-term culture medium is appropriate for each well. Hydrocortisone at 10-6 M can be selectively diluted into the medium.
  4. Transfer the medium supplemented with Fluoxetine at 10 µM into six-well plates or dishes and put the sterilized stainless steel meshes into the medium.
  5. Wash the 0.65 µm filters with boiling water two times for 3 mins each time in the glass cell culture dish for sterilization. After each washing, put the filters into phosphate buffered saline (PBS) for 2 mins and place the wet filters onto the stainless steel meshes standing at the air-liquid interface as shown in Figure 1A [schematic in the center].
    NOTE: Boiling water can be generated with the autoclave sterilizer to achieve the asepsis and equipment should be taken out of autoclave sterilizer in a timely fashion to avoid a decrease in temperature.

2. AGM Explant Culture

  1. Carefully separate the AGM regions from the embryos at E10.5 or E11 with forceps.
    1. Strip the uteruses from pregnant mice with the dissecting scissors and separate the embryos from the uteruses.
    2. Wipe off the yolk sac, umbilical cord, and viscera from the embryo body.
    3. Carefully remove the dorsal nerve tissues and surrounding muscular tissues.
    4. Cut off the tissues with the forceps at the site of anterior and hind limbs and separate the AGM region from the embryo body. Figures 1B-C show the schematic representation and morphology of dissected AGM.
  2. Explant the dissected AGMs separately onto the filters at the air-liquid interface (Figure 1A) and culture in 5% CO2 at 37 °C for 2 - 3 days.
    NOTE: Do not place the dissected AGM onto the wire of the steel mesh and make sure the filters are at the air-liquid interface during culture. Besides the AGM, yolk sac and fetal liver can also be cultured with this system7.

3. Expression Analyses

  1. mRNA level
    1. Collect the cultured AGMs into 1 mL PBS and centrifuge at 4 °C, 310 x g for 6 min.
    2. After removing the supernatant, total RNA is extracted from the collected AGMs with a monophasic solution of phenol, according to the manufacturer's instructions.
    3. Total RNA (2 µg) is then reverse transcribed using M-MLV reverse transcriptase to obtain cDNA as the template. The quantitative real-time PCR assays are performed with SYBR Green and Gapdh is used as the internal control.
  2. Protein level
    1. Collect the cultured AGM as described above in step 3.1.1.
    2. Prepare the protein from the cultured AGM with the cell lysis buffer (10 mM Tris-HCl, 10 mM NaCl, and 0.5% NP-40) containing protease inhibitor and use for western blotting to detect the protein level as previously described13.

4. Colony-Forming Units in the Culture (CFU-C) Assay

  1. After culturing for 2 - 3 days, collect the AGM regions into 1 mL phosphate buffered saline (PBS) and centrifuge at 4 °C, 310 x g for 6 mins and dissociate with 200 µL collagenase (0.1% in PBS) at 37 °C.
    NOTE: The time needed for collagenase to generate single cell-suspensions is about 20 mins. Shaking the tube containing AGM every 5 mins can accelerate the digestion process. 200 µL 0.1% collagenase is used for each AGM and 200 µL 10% serum is used to stop the reaction.
  2. Culture single cell-suspensions in M3434 medium in ultra-low attachment 24-well plates.
    NOTE: To avoid contamination, Penicillin-Streptomycin solution can be selectively added into the medium. Because the M3434 medium is viscous, a 1.0 cc syringe without a needle is used to mix the cells and medium.
  3. After 7 - 10 days culturing at 37 °C in 5% CO2, the number for each type of colonies including Burst forming unit--erythroid (BFU-E), CFU-granulo-monocyte (CFU-GM) and CFU-granulocyte, erythrocyte, macrophage, megakaryocyte (CFU-GEMM) are distinguished based on the morphology and scored with an inverted microscope (Figure 2C).

5. In Vivo Transplantation Assay

  1. Colony-forming units-spleen (CFU-S) assay
    1. After 2 - 3 days of explant culturing, collect the AGMs and prepare single cell-suspensions by incubating with 200 µL collagenase (0.1% in PBS) for 20 min.
    2. Perform lethal irradiation (9 Gy of X-rays) of 8- to 10-week old male C57BL/6 mice 4 - 5 h before cell injection.
    3. Put the irradiated mouse into a restrainer to restrict its activity.
    4. Wipe the tail using a cotton swab steeped in 75% alcohol to promote vasodilatation of the vein.
    5. Inject 0.5 embryo equivalent (ee) or 1 ee single cell-suspensions of AGM intravenously into the tail vein of irradiated mouse with a 1.0 cc syringe.
      NOTE: Cells are suspended with PBS and 0.5 mL PBS per recipient is a suitable volume. A needle of 25 gauge or 26 gauge size is used for injection with a 1.0 cc syringe. No air can be introduced into the syringe. Press the injection site with an antiseptic swab to stop bleeding.
    6. Eleven days post transplantation, collect and fix the spleens of the recipient mice in Bouin's solution (15 mL 1.22% Picric acid saturated aqueous solution, 2 mL 40% methanol and 1 mL acetic acid) for 1 - 2 days and wash with 80% alcohol for another 1 - 2 days. Count the visible colonies in the spleen macroscopically and determine the number of colonies per ee.
      ​NOTE: Bouin's fixative, wear appropriate protection.
  2. Long-term transplantation assay
    1. After 2 - 3 days explant culturing, collect the AGMs and prepare single cell-suspensions by incubating with 200 µL collagenase (0.1% in PBS) for 20 min.
    2. Perform lethal irradiation (9 Gy of X-ray) of 8- to 10-week old male C57BL/6 mice 4 - 5 hrs before cell injection.
    3. Put the irradiated mouse into a restrainer to restrict its activity.
    4. Wipe the tail using a cotton swab steeped in 75% alcohol to promote vasodilatation of the vein.
    5. Inject 0.5 embryo equivalent (ee) or 1 ee single cell-suspensions of AGM intravenously into the tail vein of an irradiated mouse with a 1.0 cc syringe. AGM are injected at a dose of 1 ee per recipient with 2×105 bone marrow cells (CD45.1 background).
      NOTE: No air can be introduced into the syringe. Press the injection site with an antiseptic swab to stop bleeding.
    6. Four months post-transplantation, collect the bone marrow of the recipient and use it for the reconstitution assay by FACS. Only the recipients with ≥10% donor-derived chimerism are considered to exhibit successful reconstitution.

Results

A recent publication reported endothelial cell-derived serotonin promotes the survival of HSCs by inhibiting the pro-apoptotic pathway in the AGM13. To confirm the promoting effect of serotonin on HSC development, Fluoxetine was included. As a selective serotonin re-uptake inhibitor (SSRI), Fluoxetine has been demonstrated to inhibit serotonin re-absorption in peripheral tissues16,17,

Discussion

It is well known that mature HSCs in the bone marrow can repopulate the blood system of irradiated recipients. Unlike these functional HSCs, the emerging HSCs in the AGM of mouse embryos are immature. Direct transplantation results showed that type I (VE-cad+ CD45- CD41+) and type II (VE-cad+ CD45+) pre-HSCs possess no reconstitution ability20. Taking advantage of the AGM explant culture system, the nascent HSCs in the AGM region can reconstit...

Disclosures

The authors have no conflicting financial interests.

Acknowledgements

We thank Suwei Gao for help in figure preparation. This work was supported by grants from the National Natural Science Foundation of China (81530004, 31425016) and the Ministry of Science and Technology of China (2016YFA0100500). J.L. performed the experiments and drafted the manuscript; F.L. edited the manuscript. Both authors read and approved the final manuscript.

Materials

NameCompanyCatalog NumberComments
durapore 0.65 µm filtersMilliporeR5BA63787AGM explant culture
M5300 long-term culture mediumStem Cell Technologies5300AGM explant culture
Trizol Tiangen5829RNA extration
M-MLV reverse transcriptasePromega90694reverse transcription
SYBR GreenQiagenA6002quantatitive real-time PCR
protease inhibitorRoche55622Protein extration
collagenaseSigmaC2674digestion of AGM tissues
MethoCult GF M3434 mediumStem Cell Technologies3434CFU-C assay
ultra-low attachment 24-well platesCostar3473CFU-C assay
C57BL/6 CD45.2 miceBeijing HFK Bioscience Co. LtdCFU-S assay
C57BL/6 CD45.1 miceBeijing HFK Bioscience Co. LtdLong-term transplantation
phosphate buffered salineLife Technologines8115284AGM Collection
Penicillin-Streptomycin solutionHyCloneSV30010AGM explant culture
anti-CD45.2-PE-CY7eBioscience25-0454-80Long-term transplantation
anti-CD45-FITCeBioscience11-0451-81Long-term transplantation
UV lampBeijing jiangmorning yuan bio-technology co., LTD039-14402power: 30W
stainless steel meshAS ONE SHANGHAI Corporation2-9817-10 aperture diameter: 2.5 mm
hydrocortisoneSigmaH0396selectively diluted into M5300 medium

References

  1. Bertrand, J. Y., et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 464, 108-111 (2010).
  2. Boisset, J. C., Robin, C. Imaging the founder of adult hematopoiesis in the mouse embryo aorta. Cell cycle. 9, 2489-2490 (2010).
  3. Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 464, 112-115 (2010).
  4. Zovein, A. C., et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 3, 625-636 (2008).
  5. Kumaravelu, P., et al. Quantitative developmental anatomy of definitive haematopoietic stem cells long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 129, 4891-4899 (2002).
  6. Orkin, S. H., Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 132, 631-644 (2008).
  7. Medvinsky, A., Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 86, 897-906 (1996).
  8. Peeters, M., et al. Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development. 136, 2613-2621 (2009).
  9. Taoudi, S., Medvinsky, A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. PNAS. 104, 9399-9403 (2007).
  10. Crisan, M., et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Reports. 6, 383-395 (2016).
  11. Durand, C., et al. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. PNAS. 104, 20838-20843 (2007).
  12. Fleury, M., Petit-Cocault, L., Clay, D., Souyri, M. Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis. Int J Dev Biol. 54, 1067-1074 (2010).
  13. Lv, J., Wang, L., Gao, Y., Ding, Y. Q., Liu, F. 5-hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival. J Exp Med. 214, 529-545 (2017).
  14. Souilhol, C., et al. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells. Nature communications. 7, 10784 (2016).
  15. Fitch, S. R., et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell. 11, 554-566 (2012).
  16. Bianchi, M., Moser, C., Lazzarini, C., Vecchiato, E., Crespi, F. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes. Exp Brain Res. 143, 191-197 (2002).
  17. Ortiz, J., Artigas, F. Effects of monoamine uptake inhibitors on extracellular and platelet 5-hydroxytryptamine in rat blood: different effects of clomipramine and fluoxetine. Br J Pharmacol. 105, 941-946 (1992).
  18. Wong, D. T., Horng, J. S., Bymaster, F. P., Hauser, K. L., Molloy, B. B. A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life sciences. 15, 471-479 (1974).
  19. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 457, 887-891 (2009).
  20. Rybtsov, S., et al. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med. 208, 1305-1315 (2011).
  21. Muthuswamy, S. K. Bringing together the organoid field: from early beginnings to the road ahead. Development. 144, 963-967 (2017).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Aorta gonad mesonephrosExplant CultureHematopoiesisHematopoietic Stem CellsHSC DevelopmentEmbryonicDissectionCollagenaseCell CultureM3434 Medium

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved