A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Representative experimental procedures for the synthesis of N-(2-alkoxyvinyl)sulfonamides and subsequent conversion to phthalan and phenethylamine derivatives are presented in detail.

Abstract

Decomposition of N-tosyl-1,2,3-triazoles with rhodium(II) acetate dimer in the presence of alcohols forms synthetically versatile N-(2-alkoxyvinyl)sulfonamides, which react under a variety of conditions to afford useful N- and O-containing compounds. Acid-catalyzed addition of alcohols or thiols to N-(2-alkoxyvinyl)sulfonamide-containing phthalans provides access to ketals and thioketals, respectively. Selective reduction of the vinyl group in N-(2-alkoxyvinyl)sulfonamide-containing phthalans via hydrogenation yields the corresponding phthalan in good yield, whereas reduction with sodium bis(2-methoxyethoxy)aluminumhydride generates a ring-opened phenethylamine analogue. Because the N-(2-alkoxyvinyl)sulfonamide functional group is synthetically versatile, but often hydrolytically unstable, this protocol emphasizes key techniques in preparing, handling, and reacting these pivotal substrates in several useful transformations.

Introduction

Rhodium(II)-azavinyl carbenoids have recently emerged as an exceptionally versatile reactive intermediate en route to numerous valuable products.1,2,3,4,5,6,7,8,9,10 In particular, many novel uses of these intermediates for production of heterocycles10 have provided chemists with new and efficient synthetic stra....

Protocol

1. Synthesis of N-Tosyl Triazole 2a: (2-(1-tosyl-1H-1,2,3-triazol-4-yl)phenyl)methanol

  1. Add a 3 x 10 mm PTFE magnetic stir bar, 139 mg of 2-ethynylbenzyl alcohol, and 20 mg of copper(I) thiophenecarboxylate (CuTC) to an oven-dried 2 - 5 mL microwave vial and seal the vial securely with a septum cap and crimper. Due to the rapid heating of the microwave, always use a new vial and cap that are free of any defects and make sure the cap is secure and properly fitted.
  2. Remove air from the vial under vacuum and refill with argon gas three times.
  3. Add 4 mL of anhydrous chloroform via syringe and commence magnetic stirring.
  4. ....

Results

All compounds in this study were characterized by 1H and 13C NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) to confirm the product structure and assess purity. Key data for representative compounds are described in this section.

Spectral data are in good agreement with the triazole structure of 2a (Figure 3). In the 1H NMR sp.......

Discussion

Triazoles 2a-b can be cleanly obtained via a Cu(I)-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) using CuTC as catalyst. Notably, triazole 2a is most efficiently generated at high temperature via a standard reflux in chloroform for 3h or heating to 100 °C for 15 min in a microwave reactor (note that time may vary depending on microwave efficiency); however, triazole 2b is most efficiently prepared via a CuAAC at room temperature. Therefore, effort must be taken.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by Hamilton College and the Edward and Virginia Taylor Fund for Student/Faculty Research in Chemistry.

....

Materials

NameCompanyCatalog NumberComments
2-Ethynylbenzyl alcohol, 95%Sigma Aldrich520039
Copper (I) thiophene-2-carboxylateSigma Aldrich682500
Chloroform, ≥99%Sigma Aldrich372978
Toluenesulfonylazide, 99.24%Chem-Impex International26107Potentially explosive
Dichloromethane, ≥99.5%Sigma Aldrich320269
Rhodium (II) acetate dimer, 99%Strem Chemicals45-1730
Silica Gel, 32-63, 60AMP Biomedicals Inc.2826For silica gel plugs
HexanesSigma Aldrich178918
Ethyl acetateSigma Aldrich439169
Chlorofom-DSigma Aldrich151823
Ethylene glycolSigma Aldrich293237
Chlorotrimethylsilane, 98%Acros11012
Sodium bicarbonateSigma AldrichS6014Dissolved in deionized water to prepare a saturated aqueous solution
Sodium sulfateFisher ScientificS429
Ethyl alcohol, absolute - 200 proofAaper Alcohol and Chemical Co.82304
10 wt% Palladium on carbonSigma Aldrich520888Can ignite in the presence of air, hydrogen gas, and/or a flammable solvent
Hydrogen gasPraxairUN1049
Diethyl etherSigma Aldrich309966
60 wt% sodium bis(2-methoxyethoxy)aluminum hydride solution in tolueneSigma Aldrich196193Reacts violently with water
MethanolSigma Aldrich34966
Ammonium chlorideFisher ScientificA661Dissolved in deionized water to prepare a saturated aqueous solution
Hydrochloric acid, 37%Sigma Aldrich258148Dissolved in deionized water to prepare a 1M solution
Sodium ChlorideSigma AldrichS25541Dissolved in deionized water to prepare a saturated aqueous solution
2-5 mL Microwave vialsBiotage355630
Microwave vial capsBiotage352298
RediSep Rf Gold Normal Phase, Silica Columns, 20 – 40 micronTeledyne Isco69-2203-345For column chromatography
BalloonsCTI Industries Corp.912100For hydrogenation
Biotage Initiator+ Microwave ReactorBiotage356007

References

  1. Horneff, T., Chuprakov, S., Chernyak, N., Gevorgyan, V., Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. J. Am. Chem. Soc. 130 (45), 14972-14974 (2008).
  2. Cuprakov, S., Kwok, S. W., Zhang, L., Lercher, L., Fokin, V. V.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keyword Extraction N 2 alkoxyvinyl sulfonamidesN tosyl 123 triazolesPhthalansPhenethylamines2 ethynylbenzyl AlcoholCopper thiophene carboxylateP Toluenesulfonyl AzideMicrowave ReactorSilica GelFlash ChromatographyTriazole Product

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved