A subscription to JoVE is required to view this content. Sign in or start your free trial.
We developed a simple and efficient protocol for the preparation of large quantities of soybean protoplasts to study complex regulatory and signaling mechanisms in live cells.
Soybean (Glycine max (L.) Merr.) is an important crop species and has become a legume model for the studies of genetic and biochemical pathways. Therefore, it is important to establish an efficient transient gene expression system in soybean. Here, we report a simple protocol for the preparation of soybean protoplasts and its application for transient functional analyses. We found that young unifoliate leaves from soybean seedlings resulted in large quantities of high quality protoplasts. By optimizing a PEG-calcium-mediated transformation method, we achieved high transformation efficiency using soybean unifoliate protoplasts. This system provides an efficient and versatile model for examination of complex regulatory and signaling mechanisms in live soybean cells and may help to better understand diverse cellular, developmental and physiological processes of legumes.
Protoplasts are plant cells that have cell walls removed. As they maintain most of features and activities of plant cells, protoplasts are a good model system to observe and evaluate diverse cellular events, and are valuable tools to study somatic hybridisation1 and plant regeneration2. Protoplasts have been also widely utilized for plant transformation3,4,5, since cell walls would otherwise block the passage of DNA into the cell. Protoplasts possess some of the physiological responses and cellular processes of intact plants, hence offering fundamental value in basic research to study subcellular protein localization6,7,8, protein-protein interactions9,10, and promoter activity11,12,13 in live cells.
The isolation of plant protoplasts was first reported in 196014 and the protocols for both isolation and transformation of protoplasts have been developed and optimized. A standard procedure of protoplast isolation involves the cutting of leaves and enzymatic digestion of cell walls, followed by separation of released protoplasts from non-digested tissue debris. Transformation strategies includes electroporation15,16, microinjection17,18, and polyethylene glycol-based (PEG)4,5,19 methods. A wide range of species have been reported successful for protoplast isolation, including Citrus20, Brassica21, Solanaceae22 and other ornamental plant families23,24. While diverse tissue types are used in various species, a system of transient expression in Arabidopsis mesophyll protoplast (TEAMP) isolated from leaves of the model plant Arabidopsis thaliana has been well established25 and widely adopted to diverse applications.
Soybean (Glycine max (L.) Merr.) is one of the most important protein and oil crops26. Unlike Arabidopsis and rice, obtaining transgenic soybean plants is known to be rather difficult and low efficiency. Agrobacterium tumefaciens-mediated infiltration has been popularly used for transient gene expression studies in the epidermal cells in tobacco27 and seedlings in Arabidopsis28,29, whereas Agrobacterium rhizogenes has been used for transformation of hairy roots in soybean30. Virus-induced gene silencing approaches have been utilized for downregulation of target genes31,32 and transient expression33 in a systemic manner. Protoplasts provide a valuable and versatile alternative to these approaches. Protoplasts can be obtained from soybean's aboveground materials and allow quick and synchronized transgene expression. However, since the initial successful isolation of soybean protoplasts in the 198334, there have been limited reports on the application of protoplasts in soybean35,36,37,38, primarily due to relatively low yields of soybean protoplasts.
Here, we describe a simple and efficient protocol for isolation of soybean protoplasts and its application for transient gene expression studies. Using young unifoliate leaves from soybean seedlings, we were able to obtain large quantities of vital protoplasts within a few hours. In addition, we have optimized a PEG-calcium-mediated transformation method that is simple and low cost to deliver DNA into soybean protoplasts with high efficiency.
1. Growth of the plants
2. Preparation of Plasmid DNA
3. Protoplast isolation
4. Protoplast transformation
5. Protoplast incubation and harvesting
Different organs of 10-day old soybeans were tested for protoplast preparation (Figure 1) and yields were observed under the microscope (Figure 2). Cell walls from hypocotyl and epicotyl were hardly digested, and some cells stayed attached to each other (Figure 2B, 2C). In cotyledon (Figure 2D) and root (Figure 2A), cell wal...
This protocol for the isolation of soybean protoplasts and the application to transient expression studies has been thoroughly tested and works very well in our laboratory. The procedures are simple and easy and require ordinary equipment and minimum cost. Our protocol yields large quantities of uniform, high quality protoplasts compared to previously reported methods34,35,36,37,
The authors declare that they have no competing financial interests.
This work was supported by the Plant Genome Research Program from the National Science Foundation (NSF-PGRP-IOS-1339388).
Name | Company | Catalog Number | Comments |
MES | Sigma Aldrich | M8250-100G | |
Cellulase CELF | Worthington Biological Corporation | LS002611 | |
Pectolyase Y-23 | BioWorld | 9033-35-6 | |
CELLULASE "ONOZUKA" R-10 | yakult | 10g | |
MACEROZYME R-10 | yakult | 10g | |
Mannitol | ICN Biomedicals | 152540 | |
CaCl2 | Fisher | C79-500g | |
BSA | NEB | R3535S | |
DTT | Sigma Aldrich | D5545-5G | |
NaCl | Sigma Aldrich | S7653-1kg | |
KCl | Fisher | P217-500g | |
MgCl2 | Sigma Aldrich | M8266-100g | |
PEG4000 | Fluka | 81240 | |
nylon mesh | carolina | 652222N | |
Tissue Culture Plates | USA Scientific | CC7682-7506 | |
Razor Blades | Fisher | 12-640 | |
hemacytometer | hausserscientific | 1483 | |
QIAprep Spin Miniprep Kit | Qiagen | 27104 | |
EZNA plasmid miniprep kit | Omega | D6942-01 | |
GeneJET Plasmid Miniprep Kit | Thermo Scientific | K0502 | |
Centrifuge 5810 | eppendorf | 5811000827 | |
Centrifuge 5424 | eppendorf | 22620401 | |
Jencons Powerpette Plus Pipet Controller | Jencons | 14526-202 | |
Zeiss 710 Confocal Microscope | Zeiss | N/A | |
Nonstick, RNase-free Microfuge Tubes, 1.5 mL | Ambion | AM12450 | |
15 mL Centrifuge Tubes | Denville | C1018-P | |
50 mL Centrifuge Tubes | Denville | C1060-P | |
Newborn Calf Serum | Thermo Scientific | 16010159 | |
Soil | Ingram's Nursery | ||
perlite | Vigoro | 100521091 | |
Torpedo Sand | JKS Ventures | ||
LB Broth, Lennox (Powder) | Fisher | BP1427-500 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved