A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes caspase Bimolecular Fluorescence Complementation (BiFC); an imaging-based method that can be used to visualize induced proximity of initiator caspases, which is the first step in their activation.
The caspase family of proteases play essential roles in apoptosis and innate immunity. Among these, a subgroup known as initiator caspases are the first to be activated in these pathways. This group includes caspase-2, -8, and -9, as well as the inflammatory caspases, caspase-1, -4, and -5. The initiator caspases are all activated by dimerization following recruitment to specific multiprotein complexes called activation platforms. Caspase Bimolecular Fluorescence Complementation (BiFC) is an imaging-based approach where split fluorescent proteins fused to initiator caspases are used to visualize the recruitment of initiator caspases to their activation platforms and the resulting induced proximity. This fluorescence provides a readout of one of the earliest steps required for initiator caspase activation. Using a number of different microscopy-based approaches, this technique can provide quantitative data on the efficiency of caspase activation on a population level as well as the kinetics of caspase activation and the size and number of caspase activating complexes on a per cell basis.
The caspase protease family are known for their critical roles in apoptosis and innate immunity 1. Because of their importance, determining when, where, and how efficiently specific caspases are activated can provide crucial insights into the mechanisms of caspase activation pathways. The imaging based protocol described here enables the visualization of the earliest steps in the caspase activation cascade. This technique takes advantage of the dynamic protein:protein interactions that drive caspase activation.
The caspases can be divided into two groups: the initiator caspases (caspase-1, -2, -4, -5, -8, -9, -10, and -12) and the executioner caspases (caspase-3, -6, and -7). The executioner caspases are present in the cell as preformed dimers and are activated by cleavage between the large and small subunit 2. When activated, they cleave numerous structural and regulatory proteins resulting in apoptosis 3. The initiator caspases are the first caspases to be activated in a pathway and generally trigger the activation of executioner caspases. In contrast to executioner caspases, initiator caspases are activated by dimerization 4,5. This dimerization is facilitated by recruitment of inactive monomers to specific large molecular weight complexes known as activation platforms. Assembly of activation platforms is governed by a series of specific protein:protein interactions. These are mediated by conserved protein interaction motifs present in the proform of the initiator caspase and include the death domain (DD), death effector domain (DED) and caspase recruitment domain (CARD) 6 (Figure 1A). Activation platforms generally include a receptor protein and an adaptor protein. The receptor is usually activated upon binding of a ligand, inducing a conformational change that allows for the oligomerization of numerous molecules. The receptor then either recruits the caspase directly or adaptor molecules that in turn bring the caspase to the complex. Thus, numerous caspase molecules come into close proximity permitting dimerization. This is known as the induced proximity model 7. Once dimerized, the caspase undergoes autoprocessing, which serves to stabilize the active enzyme 4,8. For example, assembly of the Apaf1 apoptosome is triggered by cytochrome c following its release from the mitochondria in a process called mitochondrial outer membrane permeabilization (MOMP). Apaf1 in turn recruits caspase-9 through an interaction that is mediated by a CARD present in both proteins 9. Similar protein interactions result in the assembly of the CD95 death inducing signaling complex (DISC) that leads to caspase-8 activation; the PIDDosome, which can activate caspase-2; and various inflammasome complexes that initiate caspase-1 activation 10,11,12. Thus, initiator caspases are recruited to specific activation platforms by a common mechanism resulting in induced proximity and dimerization, without which activation will not occur.
Caspase Bimolecular Fluorescence Complementation (BiFC) is an imaging-based assay that was developed to measure this first step in the activation of initiator caspases, allowing direct visualization of caspase induced proximity following activation platform assembly. This method takes advantage of the properties of the split fluorescent protein Venus. Venus is a brighter and more photostable version of yellow fluorescent protein (YFP) that can be separated into two non-fluorescent and slightly overlapping fragments: the N-terminus of Venus (Venus N or VN) and the C-terminus of Venus (Venus C or VC). These fragments retain the ability to refold and become fluorescent when in close proximity 13. Each Venus fragment is fused to the prodomain of the caspase, which is the minimal portion of the caspase that binds to the activation platform. This ensures that the caspases do not retain enzymatic activity and therefore concurrent analysis of downstream events associated with endogenous events is possible. The Venus fragments refold when the caspase prodomains are recruited to the activation platform and undergo induced proximity. (Figure 1B). The resulting Venus fluorescence can be used to accurately and specifically monitor the subcellular localization, the kinetics, and the efficiency of assembly of initiator caspase activation platforms in single cells. Imaging data can be acquired by confocal microscopy or by standard fluorescence microscopy and can be adapted to a number of different microscopy approaches including: time-lapse imaging to track caspase activation in real time; high resolution imaging for precise determinations of subcellular localization; and end point quantification of efficiency of activation.
This technique was first developed to investigate the activation of caspase-214. While the activation platform for caspase-2 is thought to be the PIDDosome, consisting of the receptor PIDD (p53-induced protein with a death domain) and the adaptor RAIDD (RIP-associated ICH-1/CAD-3 homologous protein with a death domain), PIDDosome-independent caspase-2 activation has been reported. This suggests that additional activation platforms for caspase-2 exist 15,16. Despite not knowing the full components of the caspase-2 activation platform, the caspase BiFC technique has allowed for successful interrogation of the caspase-2 signaling pathways at the molecular level 14,17. We have also successfully adapted this protocol for the inflammatory caspases (caspase-1, -4, -5 and -12) 18 and, in principle, the same approach should be sufficient to similarly analyze each of the remaining initiator caspases. This protocol could similarly be adapted to investigate other pathways were dimerization is a major activating signal. For example, STAT proteins are activated by dimerization following phosphorylation by Janus kinase (JAK) 19. Thus, the BiFC system could be used to visualize for STAT activation as well as many other pathways regulated by dynamic protein interactions. The following protocol provides step-by-step instructions for the introduction of the reporters into cells as well as methodologies for image acquisition and analysis.
1. Preparation of cells and culture dishes
NOTE: Perform Steps 1-3 in a tissue culture laminar flow hood. Wear gloves.
2. Transfection of cells to introduce the caspase BiFC components
3. Induction of caspase activation
4. Caspase BiFC data acquisition
An example of caspase-2 BiFC induced by DNA damage is shown in Figure 3. Camptothecin, a topoisomerase I inhibitor, was used to induce DNA damage and caspase-2 activation. The red fluorescent protein mCherry was used as a reporter to show that the cells express the BiFC probe and to help visualize the total number of cells. Venus fluorescence is shown in green and the large puncta represent caspase-2 induced proximity. These cells can be counted to determine ...
This protocol discusses the use of split fluorescent proteins to measure caspase induced proximity. Split Venus was chosen for this technique because it is very bright, highly photostable and the refolding is fast 13. Thus, the analysis of Venus refolding upon caspase induced proximity can provide close to real-time estimations of caspase protein interaction dynamics. Venus is split into two slightly overlapping fragments, the N terminus of Venus (Venus-N or VN) comprising amino acids 1-173 and th...
The authors declare that they have no competing financial interests.
We would like to acknowledge all the previous members of the Bouchier-Hayes lab who contributed to the development of this technique. This work was funded in part by a Texas Children's Hospital Pediatric Pilot award to LBH. We thank Joya Chandra (MD Anderson, Houston, Texas) for permission to include data published in collaboration with her team. The development of the reagents described was supported by the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the NIH (NIAID P30AI036211, NCI P30CA125123, and NCRR S10RR024574) and the assistance of Joel M. Sederstrom
Name | Company | Catalog Number | Comments |
6-well Uncoated No. 1.5 20 mm glass bottom dishes | Mattek | P06G-1.5-20-F | |
Human Plasma Fibronectin Purified Protein | Millipore | FC010-10MG | |
DPBS | Sigma | D8537-6x500ML | |
Lipofectamine 2000 reagent | Invitrogen | 11668019 | |
OPTI MEM I | Invitrogen | 31985088 | |
C2-Pro VC plasmid | Addgene | 49261 | |
C2-Pro VN plasmid | Addgene | 49262 | |
Inflammatory caspase BiFC plasmids | available by request from LBH | ||
HeLa cells stably expressing the C2-Pro BiFC components | available by request from LBH | ||
DsRed mito plasmid | Clontech | 632421 | similar plasmids that can be used as fluorescent reporters can be found on Addgene |
HEPES | Invitrogen | 15630106 | |
2 Mercaptoethanol 1000X | Invitrogen | 21985023 | |
q-VD-OPH | Apex Bio | A1901 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved