A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe a protocol using laser capture microdissection coupled with LC/MS analysis to spatially-quantify drug distributions within pulmonary tuberculosis granulomas. The approach has broad applicability to quantifying drug concentrations within tissues at high spatial detail.
Tuberculosis is still a leading cause of morbidity and mortality worldwide. Improvements to existing drug regimens and the development of novel therapeutics are urgently required. The ability of dosed TB drugs to reach and sterilize bacteria within poorly-vascularized necrotic regions (caseum) of pulmonary granulomas is crucial for successful therapeutic intervention. Effective therapeutic regimens must therefore contain drugs with favorable caseum penetration properties. Current LC/MS methods for quantifying drug levels in biological tissues have limited spatial resolution capabilities, making it difficult to accurately determine absolute drug concentrations within small tissue compartments such as those found within necrotic granulomas. Here we present a protocol combining laser capture microdissection (LCM) of pathologically-distinct tissue regions with LC/MS quantification. This technique provides absolute quantification of drugs within granuloma caseum, surrounding cellular lesion and uninvolved lung tissue and, therefore, accurately determines whether bactericidal concentrations are being achieved. In addition to tuberculosis research, the technique has many potential applications for spatially-resolved quantification of drugs in diseased tissues.
The ability to spatially resolve and quantify drug levels is a crucial requirement for determining whether anti-tuberculosis drugs reach bacterial subpopulations within pulmonary lesions at sterilizing concentrations1. Of particular importance is determining drug penetration into the necrotic core of the lesion (called caseum), which typically contains the highest number of bacilli and may be poorly accessible to drugs due to the absence of vascularization.
Traditional methods to assess lesion penetration, which involve homogenization of excised pulmonary lesions followed by solvent extraction and liquid chromatography mass spectrometry (LC/MS) analysis, are highly sensitive and selective for the drugs of interest. However, these methods offer poor spatial information, limited to the size of the original homogenized tissue. Mass spectrometry-based imaging approaches, such as matrix-assisted laser desorption ionization (MALDI)2,3, desorption electrospray ionization (DESI)4 or liquid-enhanced surface extraction5,6 offer highly spatially-resolved imaging capabilities, but direct quantification can be extremely challenging or impossible due to heterogeneous ion suppression effects and differing extraction efficiencies of analyte from the various cell or tissue types7. Additionally, most direct tissue MS imaging approaches are inherently less sensitive than LC/MS due to the lack of chromatographic separation of endogenous species competing for ionization and the lower solvent extraction efficiency of the drug from tissue.
Laser capture microdissection (LCM) combined with LC/MS analysis has been routinely applied to isolate and characterize distinct tissue regions for proteomic studies8,9 and recently utilized for drug quantification in dosed animal tissue10. Here we present an optimized protocol applying LCM combined with LC/MS (LCM-LC/MS) analysis to quantify anti-TB drugs within distinct granuloma compartments. In the laser capture microdissection process, a UV laser is focused through the microscope objective onto the tissue section, which cuts and isolates the desired tissue area by following a path defined by the user. For gravity-assisted LCM (the technique used for this research), the tissue section is mounted onto a thin polymer membrane slide (PET or PEN) and the tissue is captured in a collection tube cap sited below the slide. The drugs are extracted from the excised tissue and quantified using standard LC/MS approaches. The amount of tissue required to be collected is ultimately determined from the expected concentration of the drug present in the tissue and the sensitivity of the LC/MS method. For most analyses of drugs dosed at therapeutic levels and analyzed using a routine triple quadrupole mass spectrometer, 3 million µm2 (3 mm2) of tissue surface area is sufficient.
This protocol describes the powerful combination of spatial profiling and full quantification offered by LCM-LC/MS, providing absolute drug concentrations within all compartments of TB granulomas. The technique may also be applied to determining drug concentrations in many different diseased tissues providing vital drug discovery and development information.
All animal studies were carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health with approval from the Institutional Animal Care and Use Committee of the NIAID (NIH), Bethesda, MD.
1. Animal Experiments and Tissue Collection
This section of the protocol describes animal procedures and sample collection under Biosafety Level 3 (BSL3) conditions. Detailed protocols of the Mycobacterium tuberculosis aerosol infection procedure and drug administration protocols in rabbits have been described previously11,12.
2. Tissue Sectioning
3. Microdissection
4. Extraction and LCMS Analysis
5. Method Validation
An overview of the LCM-LC/MS approach is shown in Figure 1. After sterilizing the tissue by gamma-irradiation, all subsequent steps (from tissue sectioning onwards) take place outside of BSL3 conditions. Figure 2 shows the lesion biopsy sections before and after tissue isolation by LCM. Necrotic and cellular areas of TB lesions can be easily identified and isolated by visual inspection of optical images alone (without the require...
Spatially-resolved quantification of drugs within pulmonary TB lesions is required to determine whether drug exposure reaches sterilizing concentrations to bacterial populations residing within the different lesion compartments. The LCM-LC/MS method described here enables absolute quantification of anti-TB drugs within all lesion compartments, including the bacteria-rich caseum, using only 1 - 3 tissue sections in total. Traditional tissue homogenization and LC/MS approaches for drug quantification in tissue often lack t...
The authors have nothing to disclose.
We thank Paul O'Brien, Marizel Mina and Isabella Freedman for animal experiments, Jacquie Gonzalez and Danielle Weiner from NIH/NIAID for help with gamma irradiation of rabbit tissues prior to laser capture microdissection and Jansy Sarathy for manuscript thoughts and advice. This work was supported by funding from the Bill and Melinda Gates Foundation (OPP1174780) and NIH shared instrumentation grant 1S10OD018072. We thank Eliseo A. Eugenin for providing access to the Leica LMD 6500 microscope and sharing expertise and advice. The purchase, and ongoing support of, the LMD 6500 was funded by The National Institute of Mental Health grant, MH096625, the National Institute of Neurological Disorders and Stroke, NS105584, PHRI funding (to E.A.E) and GSK contributions (to E.A.E).
Name | Company | Catalog Number | Comments |
New Zealand White rabbits | Covance | N/A | |
HN878 Mycobacterium tuberculosis | BEI Resources | NR-13647 | |
Ketathesia (Ketamine) 100 mg/mL C3N | Henry Schein Animal Health | 56344 | |
Anased (Xylazine) 100 mg/mL | Henry Schein Animal Health | 33198 | |
Euthasol (pentobarbital sodium and phenytoin sodium) Solution | Virbac | 710101 | |
Acetonitrile (LC-MS grade) | Fisher | A955-212 | |
Methanol (LC-MS grade) | Fisher | A456-212 | |
Formic Acid (LC-MS grade) | Fisher | A117-50 | |
Water (LC-MS grade) | Fisher | W6212 | |
0.2 mL flat-cap PCR tubes | Corning | 07-200-392 | |
Steel frames, PET-membrane | Leica | 11505151 | |
Premium Frosted Microscope Slides | Fisher | 12-544-2 | |
96 Deep well plate 2.0ML PP RB | Fisher | NC0363259 | |
Zorbax SB-C8 column (4.6 by 50 mm; particle size, 3.5 μm) | Agilent | 820631-001D | |
"Zipper” Seal Sample Bags | Fisher | 01-816-1B | |
Name | Company | Catalog Number | Comments |
Equipment | |||
CM1850 cryostat | Leica | Discontinued | Leica CM1860 is the current model |
Laser Microdissection System 6500 | Leica | Discontinued | Leica LMD 6 is the current model |
Agilent 1260 Infinity II HPLC | Agilent | ||
API 4000 QTRAP Mass Spectrometer | Sciex |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved