Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to describe ex situ and in situ investigations of structural transformations in metallic glasses. We employed nuclear-based analytical methods which inspect hyperfine interactions. We demonstrate the applicability of Mössbauer spectrometry and nuclear forward scattering of synchrotron radiation during temperature-driven experiments.

Abstract

We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.

Introduction

Iron-based MGs prepared by rapid quenching of a melt represent industrially attractive materials with numerous practical applications1. Especially since their magnetic properties are often superior to conventional (poly)crystalline alloys2,3. To better benefit from their advantageous parameters, their response to elevated temperatures should be known. With increasing temperature, the amorphous structure relaxes and, finally, the crystallization starts. In some types of MGs, this can lead to the deterioration of their magnetic parameters and, consequently, poorer performance. There are, however, several families of iron-based MGs with special compositions4,5,6,7 in which the newly formed crystalline grains are very fine, typically below about 30 nm in size. The nanocrystals stabilize the structure and thus, preserve acceptable magnetic parameters over a wide temperature range8,9. These are the so-called nanocrystalline alloys (NCA).

The long-term performance reliability of MGs, especially under elevated temperatures and/or tough conditions (ionizing radiation, corrosion, etc.) demands thorough knowledge of their behavior and individual physical parameters. Because MGs are amorphous, the assortment of analytical techniques that are suitable for their characterization is rather limited. For example, diffraction methods provide broad and featureless reflections that can be used only for the verification of amorphicity.

It is noteworthy that several, usually indirect methods exist that provide fast and non-destructive characterization of MGs (e.g., magnetostrictive delay line sensing principle). This method provides fast characterization of structural and stress states including the presence of inhomogeneities. It was advantageously applied to fast and non-destructive characterization along the whole length of MG ribbons10,11.

More detailed insight into disordered structural arrangement can be achieved via hyperfine interactions that sensitively reflect the local atomic arrangement of the resonant atoms. Moreover, variations in topological and chemical short-range order can be revealed. In this respect, the methods like nuclear magnetic resonance (NMR) spectrometry and/or Mössbauer spectrometry, both performed on 57Fe nuclei, should be considered12,13. While the former method provides response exclusively to magnetic dipole hyperfine interactions, the latter is sensitive also to the electric quadrupole interactions. Thus, Mössbauer spectrometry makes simultaneously available information on both the structural arrangement and magnetic states of the resonant iron nuclei14.

Nevertheless, to achieve reasonable statistics, the acquisition of a Mössbauer spectrum usually takes several hours. This restriction should be considered especially when temperature-dependent experiments are envisaged. Elevated temperature that is applied during the experiment causes structural modifications in the investigated MGs15. Consequently, only ex situ experiments performed at room temperature upon samples that were first annealed at certain temperature and then returned to ambient conditions provide reliable results.

The evolution of MG structures during heat treatment is routinely studied by analytical techniques which enable rapid data acquisition as for example X-ray diffraction of synchrotron radiation (DSR), differential scanning calorimetry (DSC), or magnetic measurements. Though in situ experiments are possible, the obtained information concerns either structural (DSR, DSC) or magnetic (magnetic data) features. However, in the case of DSC (and magnetic measurements) the identification of the type of (nano)grains that emerge during the crystallization is not possible. On the other hand, DSR data do not indicate the magnetic states of the investigated system. A solution to this situation is a technique that makes use of hyperfine interactions: NFS of synchrotron radiation16. It belongs to a group of methods that exploits nuclear resonant scattering processes17. Due to extremely high brilliance of radiation obtained from the third generation of synchrotrons, temperature NFS experiments under in situ conditions became feasible18,19,20,21,22,23.

Both Mössbauer spectrometry and NFS are governed by the same physical principles related to nuclear resonance among energy levels of 57Fe nuclei. Nevertheless, while the former scans hyperfine interactions in the energy domain, the latter provides interferograms in the time domain. In this way, the results obtained from both methods are equivalent and complementary. To evaluate the NFS data, a reasonable physical model must be established. This challenging task can be accomplished by the help of Mössbauer spectrometry which provides the first estimate. Complementarity between these two methods means that in situ NFS inspects transient states and Mössbauer spectrometry reflects the stable states, viz. the initial and/or the final state of a material studied ex situ.

This article describes in detail selected applications of these two less common methods of nuclear resonances: here, we apply them to the investigation of structural modifications that occur in a (Fe2.85Co1)77Mo8Cu1B14 MG exposed to heat treatment. We hope that this article attracts the interest of researchers to use these techniques for the investigation of similar phenomena and eventually with different types of materials.

Protocol

1. Preparation of a MG

NOTE: To demonstrate a broad range of diagnostic capabilities of NFS in combination with Mössbauer spectrometry, an appropriate MG composition was designed, namely (Fe3Co1)76Mo8Cu1B15 (at.%). This system shows the magnetic transition from the ferromagnetic to paramagnetic state below the onset of crystallization. Moreover, crystallites that emerge during the first crystallization step form bcc-Fe,Co phase. Because cobalt replaces iron in some atomic positions of the bcc lattice, deviations in the respective hyperfine interactions occur.

  1. Preparation of the melt
    NOTE: Mössbauer spectrometry and NFS scan the local atomic arrangements via hyperfine interactions of 57Fe nuclei that are present in the investigated samples. Natural abundance of this stable nuclide among all Fe isotopes is, however only 2.19%. To decrease the acquisition time of in situ NFS experiments, the relative content of the 57Fe isotope should be increased to about 50%.
    1. Take a quartz glass crucible (cylindrical shape with a diameter of 15 mm), cover its inner walls with boron nitride to avoid possible contamination of the content by Si from the walls, and insert 0.4050 g of highly enriched 57Fe (~ 95%) and 0.5267 g of standard electrolytic pure iron (purity 99.95%) to this crucible. The total mass of the mixture is of 0.9317 g and ensures isotopic enrichment of ca. 50% 57Fe.
      NOTE: Because of the high price of the stable 57Fe isotope, optimize its amount to the lowest possible mass. Approximately 500 mg of 57Fe should be enough to ensure the overall weight of the melt to approximately 1.5 g. This is the low technological limit of the preparation equipment.
    2. Add 0.3245 g of electrolytic Co (99.85%), 0.0184g of Cu (99.8%), 0.2222 g of Mo (99.95%) and 0.0470 g of crystalline B (99.95%) into the same quartz glass crucible. The total mass of the mixture is of 1.5438 g and the intended composition of the powder is (Fe3Co1)76Mo8Cu1B15.
    3. Melt the obtained mixture of standard electrolytic materials by inductive heating in a quartz glass crucible under protective Argon (4N8) atmosphere to avoid oxidation, and use a radiofrequency field of 90-120 kHz.
      NOTE: The radio frequency field ensures mixing of the individual components in the crucible. Their mixing proceeds further by the help of eddy currents when a melt is formed. Allow sufficient time to melt the powder mixture and form a liquid. Visual inspection is sufficient, there is no need to measure the temperature of the resulting liquid.
    4. Remove the obtained small ingot from the crucible. Visually check the occurrence of any traces of slag spots on its surface. If present, remove them by mechanical polishing.
  2. Preparation of the ribbon-shaped sample
    1. Use an apparatus for planar flow casting. An example of such a device is shown in Figure 1.
      NOTE: The melt inside a quartz tube is expelled by Ar flow onto a quenching wheel which rotates in the air. There is no need for special atmospheric conditions under which the quenching wheel is operated (e.g., vacuum or inert gas environment) for this composition of the melt.
    2. Because of small weight of the ingot (~1.5 g), choose a quartz tube with a nozzle that has a round orifice of 0.8 mm in diameter. Put the ingot inside and melt it using inductive heating. Keep the temperature of the melt at 1,280-1,295 °C.
    3. Adjust the surface speed of the cooling wheel to 40 m/s.
    4. Cast the melt upon the rotating quenching wheel under ambient conditions, i.e., in the air.
      NOTE: The resulting ribbon is about 1.5-2 mm wide, 25-27 µm thick, and 5 m long. The air side of the ribbon, which was exposed during the production to the surrounding air atmosphere, is optically shiny (glossy) while the opposite wheel side, which was in direct contact with the quenching wheel, is mat (dull). These subtle ribbon qualities result from the low mass of the melt. Thus, it is important to verify the final chemical composition of the produced as-quenched ribbon because of the low input masses of the individual elements.
  3. Verification of the final chemical composition of the ribbon
    1. Prepare several (up to five) short pieces of the ribbon, each having a mass of about 0.70 mg. Chose them from different parts of the produced ribbon along its length.
    2. Dissolve every single piece of ribbon in 1 mL of concentrated (67%) HNO3 acid and fill with water to reach 50 mL total volume of the solution.
    3. Determine the content of Mo and B by optical emission spectrometry with inductively coupled plasma (OES-ICP). Use the method of external calibration as provided in the instrument's manual. Record the signals at the following wavelengths: Mo at 203.844 nm and 204.598 nm, and B at 249.773 nm.
    4. Determine the content of Fe, Co, and Cu by flame atomic absorption spectrometry (F-AAS). Use the method of external calibration as provided in the instrument's manual, and select these wavelengths: Fe at 248.3 nm, Co at 240.7 nm, and Cu at 324.7 nm.
  4. Structural characterization of the produced ribbons
    1. Check the amorphous nature of the produced ribbons by performing X-ray diffraction (XRD) in Bragg-Brentano geometry; use the Cu anode with a wavelength of 0.154056 nm, record the diffraction pattern from 20-100° of 2Θ with an angular step of 0.05° and acquisition time of 20 s for one point.
      NOTE: The XRD diffractogram of an amorphous sample is characterized by broad reflection peaks like those shown in Figure 2. No narrow lines that indicate the presence of crystallites should be present.
    2. Prepare small pieces of the produced ribbons with a total mass of about 3-5 mg and place them into a graphite crucible of a DSC equipment.
      NOTE: Small pieces of about 2 mm in length can be cut off from the ribbon by scissors.
    3. Perform the DSC experiment with a temperature ramp of 10 K/min in a temperature range of 50-700 °C under Ar atmosphere.
    4. Determine the temperature of the onset of crystallization Tx1, which is taken at the kink of the most pronounced peak on the DSC curve.
      NOTE: The temperature of the onset of crystallization Tx1 is indicated in Figure 3 by an arrow.
    5. Chose five temperatures of annealing that cover both the pre-crystallization and crystallization regions on the DSC for further ex situ annealing.
      NOTE: In our case, appropriate temperatures are 370, 410, 450, 510, and 550 °C as shown in Figure 3.
  5. Ex situ annealing
    1. Prepare five groups of ~ 7 cm long pieces (the total length) of the as-quenched ribbon. The individual ribbons should be at least 1 cm long.
    2. For ex situ annealing, use a furnace (Figure 4). Set up the destination temperature and wait for 15 min for its stabilization.
      NOTE: The furnace design ensures minimal onset times for isothermal annealing. This furnace consists of two parts: upper and lower round massive nickel-plated copper blocks that act as a temperature homogenizer. Kanthal A strips heat up the blocks with high dynamics of temperature regulation and stabilization. The destination temperature is that determined in step 1.4.5.
    3. Insert pieces of the ribbon into the evacuated and thermally stabilized zone. To do this, open a 7-10 mm gap between the two blocks and slide the ribbons directly into the center of the heated zone.
    4. Close the gap immediately. In this way, the temperature of the sample achieves the furnace temperature in less than 5 s within a 0.1 K difference.
    5. Perform the annealing at 370, 410, 450, 510, and 550 °C for 30 min under vacuum to prevent surface oxidation.
    6. After annealing, remove the heated ribbons and place them on a cold substrate inside the vacuum system. This ensures fast cooling of the samples to room temperature.
      NOTE: Thermal treatment of the as-quenched ribbons induces structural changes that eventually lead to crystallization of the originally amorphous material.

2. Methods of Investigation

  1. Mössbauer spectrometry
    NOTE: The use of iron enriched to about 50% in 57Fe for production of the studied MG ensures sufficiently short acquisition times for in situ NFS experiments. On the other hand, the effective thickness of the ribbons is significantly increased. This poses issues related to extremely high broadening of the absorption Mössbauer spectral lines recorded in a conventional transmission geometry experiment. That is why surface sensitive techniques of Mössbauer spectrometry should be considered. Namely, Conversion Electron Mössbauer Spectrometry (CEMS) and Conversion X-ray Mössbauer Spectrometry (CXMS) can be applied. While CEMS scans subsurface regions to the depth of about 200 nm, CXMS provides information from deeper areas that extend down to about 5-10 µm.
    1. Prepare the samples for CEMS/CXMS experiments; use 6-8 pieces of ~ 1 cm long ribbons for one sample.
    2. Attach the ribbons side-by-side to an aluminum holder to form a compact area of about 1 x 1 cm2; use adhesive tape over the ends of the ribbons; all ribbons must be placed with their air sides upwards.
      NOTE: Ensure that there is an electric contact between the ribbons and the holder and that the central part of the sample (about 8 x 10 mm2) is clean from any surface contamination, e.g., remains of the adhesive tape.
    3. Insert the aluminum holder with the sample into the CEMS/CXMS detector.
    4. Prior to the measurement, thoroughly wash the inner detector volume with a stream of the detection gas to expel all residual air. Allow 10-15 min to accomplish this procedure.
    5. Adjust the gas flow through the detector by a needle valve to 3 mL/min.
    6. Connect a high voltage to the detector: a typical value is about 1.2 kV for CEMS and about 200 V higher for CXMS.
    7. Record the CEMS and CXMS Mössbauer spectra using a constant acceleration spectrometer equipped with a 57Co/Rh radioactive source. Operate the spectrometer with a gas detector at room temperature according to the manual.
    8. Accomplish the detection of conversion electrons and X-rays by a gas detector filled with a He+CH4 and Ar+CH4 gas mixture, respectively. Keep the amount of CH4 at 10% in both cases.
    9. Repeat steps 2.1.2 to 2.1.8 for the wheel side of the investigated ribbons.
    10. Perform velocity calibration14 of the apparatus by using a thin (12.5 µm) α-Fe foil.
    11. Evaluate the CEMS/CXMS spectra; quote the obtained isomer shift values with respect to a room temperature Mössbauer spectrum of the calibration α-Fe foil.
      NOTE: The obtained Mössbauer spectra can be evaluated by any suitable fitting code, for example by the Confit software24.
  2. NFS
    1. Accomplish the NFS experiments using a suitable nuclear resonance beamline at a synchrotron. A possible option: ID 18 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.25
    2. Tune the energy of the photon beam to 14.413 keV with a bandwidth of ~ 1 meV.
    3. Place an approximately 6 mm long ribbon of the investigated MG in a vacuum furnace.
    4. Record the NFS time-domain patterns during continuous heating of the sample to a temperature of up to 700 °C with a ramp of 10 K/min. Use 1-min time intervals for acquisition of experimental data during the entire in situ annealing process.
      NOTE: The transmission geometry of the NFS experiment ensures that information on hyperfine interactions is obtained from the sample's bulk.
    5. Evaluate the NFS experimental data using a suitable software (e.g., www.nrixs.com).
      NOTE: During one in situ experiment, typically up to 100 NFS time-domain patterns are recorded. During their evaluation by the CONUSS software package26,27, consider the application of a special free software called Hubert that can evaluate such enormous data quantities in a semi-automatic mode28.

Results

The XRD pattern in Figure 2 exhibits broad featureless diffraction peaks. The observed reflections demonstrate that the produced ribbon of the (Fe2.85Co1)77Mo8Cu1B14 MG is XRD amorphous.

Due to its sensitivity, XRD has some limitations in unveiling surface crystallization. The presence of crystallites amounting to less than about 2-3%...

Discussion

Ex situ Mössbauer effect experiments describe a steady situation which is encountered in the investigated MG after the applied heat treatment. Each spectrum was collected for a duration of several hours at room temperature. Thus, the evolution of the originally amorphous structure was followed as a function of annealing conditions. Because Mössbauer spectrometry is sensitive to hyperfine interactions acting upon the resonant nuclei, faint details of structural and/or magnetic modifications induced by e...

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contracts No. APVV-16-0079 and APVV-15-0621, grants VEGA 1/0182/16 and VEGA 2/0082/17, and the internal IGA grant of Palacký University (IGA_PrF_2018_002). We are grateful to R. Rüffer (ESRF, Grenoble) for assistance with the synchrotron experiments.

Materials

NameCompanyCatalog NumberComments
stable isotope, 57FeIsoflex USAiron-57metallic form
standard eletrolytic Fe, 99.95 %Sigma Aldrich (Merck)1.03819fine powder
electrolytic Co, 99.85 %Sigma Aldrich (Merck)1.12211fine powder
electrolytic Cu, 99.8 %Sigma Aldrich (Merck)1.02703fine powder
electrolytic Mo, 99.95 %Sigma Aldrich (Merck)1.12254fine powder
crystalline B, 99.95 %Sigma Aldrich (Merck)266620crystalline
calibration foil for Mössbauer spectrometry, bcc-FeGoodFellow564-385-23foil 0.0125 mm, purity 99.85 %
HNO3 acid, ANALPURE UltraAnalytika Praha, Czech RepublicUAc0061aconcentration 67 %, volume 500 mL
spectrometer for atomic absorption spectrometryPerkin Elmer 1100, Germany
spectrometer for optical emmission spectrometry with inductively coupled plasmaJobin Yvon 70 Plus, France
X-ray diffractometerBruker D8 Advance, USA
differential scanning calorimeterPerkin Elmer DSC 7, Germany

References

  1. McHenry, M. E., Laughlin, D. E. Nano-scale materials development for future magnetic applications. Acta Mater. 48 (1), 223-238 (2000).
  2. Chang, Y. -. H., Hsu, C. -. H., Chu, H. -. L., Chang, C. -. W., Chan, W. -. S., Lee, C. h. -. Y., Yao, C. -. S., He, Y. -. L. Effect of uneven surface on magnetic properties of Fe-based amorphous transformer. Int. J. Elect. Comp. Energetic, Electronic and Commun. Eng. 5 (8), 1160-1164 (2011).
  3. Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61 (3), 718-734 (2013).
  4. Yoshizawa, Y., Oguma, A., Yamauchi, K. New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 64 (10), 6044-6046 (1988).
  5. Suzuki, K., Kataoka, N., Inoue, A., Makino, A., Masumoto, T. High saturation magnetization and soft magnetic-properties of bcc Fe-Zr-B alloys with ultrafine grain-structure. Mater. Trans. JIM. 31 (8), 743-746 (1990).
  6. Willard, M. A., Laughlin, D. E., McHenry, M. E., Thoma, D., Sickafus, K., Cross, J. O., Harris, V. G. Structure and magnetic properties of (Fe0.5Co0.5)(88)Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84 (88), 6773-6777 (1998).
  7. Makino, A., Men, H., Kubota, T., Yubuta, K., Inoue, A. New Fe-metalloids based nanocrystalline alloys with high B-s of 1.9 T and excellent magnetic softness. J. Appl. Phys. 105 (7), (2009).
  8. Suzuki, K., Herzer, G. Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Mater. 67 (6), 548-553 (2012).
  9. Hasegawa, R. Advances in amorphous and nanocrystalline materials. J. Magn. Magn. Mater. 324 (21), 3555-3557 (2012).
  10. Hristoforou, E., Reilly, R. E. Nonuniformity in amorphous ribbon delay lines after stress and current annealing. J. Appl. Phys. 69 (8), 5008-5010 (1991).
  11. Hristoforou, E., Niarchos, D. Fast characterization of magnetostrictive delay-lines. IEEE Trans. Magn. 29 (6), 3147-3149 (1993).
  12. Miglierini, M., Lančok, A., Kohout, J. Hyperfine fields in nanocrystalline Fe-Zr-B probed by 57Fe nuclear magnetic resonance spectroscopy. Appl. Phys. Lett. 96 (21), (2010).
  13. Kohout, J., Křišťan, P., Kubániová, D., Kmječ, T., Závěta, K., Štepánková, H., Lančok, A., Sklenka, &. #. 3. 1. 7. ;., Matúš, P., Miglierini, M. Low Temperature Behavior of Hyperfine Fields in Amorphous and Nanocrystalline FeMoCuB. J. Appl. Phys. 117 (17), 1-17 (2015).
  14. Gütlich, P. h., Bill, E., Trautwein, A. X. . Mössbauer Spectroscopy and Transition Metal Chemistry. , (2011).
  15. Stankov, S., Sepiol, B., Kaňuch, T., Scherjau, D., Würschum, R., Miglierini, M. High Temperature Mössbauer Effect Study of Fe90Zr7B3 Nanocrystalline Alloy. J. Phys.: Condens. Mat. 17 (21), 3183-3196 (2005).
  16. Smirnov, G. V. General properties of nuclear resonant scattering. Hyperfine Int. 123 (1-8), 31-77 (1999).
  17. Röhlsberger, R. . Nuclear Condensed Matter Physics with Synchrotron Radiation. , (2004).
  18. Miglierini, M., Procházka, V., Stankov, S., Švec, P., Zajac, M., Kohout, J., Lančok, A., Janičkovič, D., Švec, P. Crystallization kinetics of nanocrystalline alloys revealed by in-situ nuclear forward scattering of synchrotron radiation. Phys. Rev. B. 86 (2), (2012).
  19. Miglierini, M., Procházka, V., Rüffer, R., Zbořil, R. In situ crystallization of metallic glasses during magnetic annealing. Acta Mater. 91, 50-56 (2015).
  20. Procházka, V., Vrba, V., Smrčka, D., Rüffer, R., Matúš, P., Mašláň, M., Miglierini, M. Structural transformation of NANOPERM-type metallic glasses followed in situ by synchrotron radiation during thermal annealing in external magnetic field. J. Alloy. Compounds. 638, 398-404 (2015).
  21. Miglierini, M., Pavlovič, M., Procházka, V., Hatala, T., Schumacher, G., Rüffer, R. Evolution of structure and local magnetic fields during crystallization of HITPERM glassy alloys studied by in situ diffraction and nuclear forward scattering of synchrotron radiation. Phys. Chem. Chem. Phys. 17 (42), 28239-28249 (2015).
  22. Miglierini, M. B., Procházka, V., Khodaei, M., Petaccia, L. Nanocrystallization of Metallic Glasses Followed by in situ Nuclear Forward Scattering of Synchrotron Radiation. X-ray Characterization of Nanomaterials by Synchrotron Radiation. , 7-29 (2017).
  23. Miglierini, M., Matúš, P. Structural Modifications of Metallic Glasses Followed by Techniques of Nuclear Resonances. Pure Appl. Chem. 89 (4), 405-417 (2017).
  24. Žák, T., Jirásková, Y. CONFIT: Mössbauer spectra fitting program. Surf. Interf. Anal. 38 (4), 710-714 (2006).
  25. Rüffer, R., Chumakov, A. I. Nuclear-resonance beamline at ESRF. Hyperfine Interact. (1-4), 589-604 (1996).
  26. Sturhahn, W., Gerdau, E. Evaluation of time-differential measurements of nuclear-resonance scattering. of X-rays Phys. Rev. B. 49 (14), 9285-9294 (1994).
  27. Sturhahn, W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interact. 125 (1-4), 149-172 (2000).
  28. Vrba, V., Procházka, V., Smrčka, D., Miglierini, M. Advanced Approach to the Analysis of a Series of in-situ Nuclear Forward Scattering Experiments. Nucl. Instr. Meth. Phys. Res. A. 847, 111-116 (2017).
  29. Miglierini, M., Grenèche, J. -. M. Mössbauer Spectrometry of Fe(Cu)MB-Type Nanocrystalline Alloys: I. The Fitting Model for the Mössbauer Spectra. J. Phys.: Condens. Matter. 9 (10), 2303-2319 (1997).
  30. Mülhaupt, G., Rüffer, R. Properties of synchrotron radiation. Hyperfine Int. 123 (1-8), 13-30 (1999).
  31. Rüffer, R. Nuclear resonance scattering. C. R. Physique. 9 (5-6), 595-607 (2008).
  32. Seto, M. Condensed matter physics using nuclear resonant scattering. J. Phys. Soc. Jpn. 82 (2), 021016 (2013).
  33. Machala, L., Procházka, V., Miglierini, M., Sharma, V. K., Marušák, Z., Wille, H. -. C. h., Zbořil, R. Direct Evidence of Fe(V) and Fe(IV) Intermediates during Reduction of Fe(VI) to Fe(III): A Nuclear Forward Scattering of Synchrotron Radiation Approach. Phys. Chem. Chem. Phys. 17 (34), 21787-21790 (2015).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Ex SituIn SituStructural TransformationsCrystallizationMetallic GlassesM ssbauer SpectroscopyNuclear Forward ScatteringSynchrotron RadiationX ray DiffractionDSCAnnealingAmorphousIron basedMagnetic MicrostructureHyperfine Interactions

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved