JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Dissipative Microgravimetry to Study the Binding Dynamics of the Phospholipid Binding Protein Annexin A2 to Solid-supported Lipid Bilayers Using a Quartz Resonator

Published: November 1st, 2018

DOI:

10.3791/58224

1Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 2Institute of Biochemistry, University of Münster, 3Cluster of Excellence 'Cells in Motion', University of Münster
* These authors contributed equally

The dissipative quartz crystal microbalance technique is a simple and label-free approach to measure simultaneously the mass uptake and viscoelastic properties of the absorbed/immobilized mass on sensor surfaces, allowing the measurements of the interaction of proteins with solid-supported surfaces, such as lipid bilayers, in real-time and with a high sensitivity. Annexins are a highly conserved group of phospholipid-binding proteins that interact reversibly with the negatively charged headgroups via the coordination of calcium ions. Here, we describe a protocol that was employed to quantitatively analyze the binding of annexin A2 (AnxA2) to planar lipid bilayers prepared on the surface of a quartz sensor. This protocol is optimized to obtain robust and reproducible data and includes a detailed step-by-step description. The method can be applied to other membrane-binding proteins and bilayer compositions.

Tags

Keywords Dissipative Microgravimetry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved