A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here, we present a protocol of elastic staining to identify elastic fibers in pT3N0M0 gastric cancer tissues on formalin-fixed, paraffin-embedded sections. Subsequently, we describe a method to determine whether tumor cells invade beyond the elastic lamina.
The elastic lamina, which is usually located in the sub-mesothelial layer, adjacent to the peritoneum mesothelial cells, is amphiphilic on hematoxylin and eosin (H&E) staining but can be visualized through elastic staining. One of the important benefits of elastic staining is that it makes it easy to determine whether tumor cells have invaded beyond the elastic lamina. This helps in examining the extent of peritoneal surface invasion, thereby distinguishing the pT3 and pT4 stages in gastrointestinal cancer. In this study, we present a protocol to identify elastic fibers in the formalin-fixed, paraffin-embedded pT3N0M0 gastric cancer tissue sections. We prepare 5-µm paraffin sections fixed on slides, and then all the slides are deparaffinated and rehydrated during the staining procedure. Subsequently, all the sections are oxidized by potassium permanganate, bleached by oxalic acid, stained by elastic staining, and counterstained by Van Gieson's. Finally, we examine the effect of staining; elastic lamina is stained blue-black and collagen fibers are stained red, while the cancer cells are stained in varying shades of yellow. We also describe in detail the methods used for determining the positional relationship between cancer cells and elastic lamina. This method is simple, low-cost, and widely applicable in the identification of peritoneal surface invasion in gastrointestinal cancer because of its outstanding selectivity for elastic fibers and authentic results.
As per the Tumor, Node, and Metastasis (TNM) cancer staging system, the prognosis of gastric cancer at pathologic stage pT4 is significantly worse than that at pT3 (8th UICC/AJCC)1. With gastric cancer, classification of the primary tumor (pT) usually depends on the depth of tumor invasion2. Pathologic stage pT3 gastric cancer is defined as cancer invading through the muscularis propria into subserosal tissues, whereas pT4 gastric cancer is defined as cancer penetrating to the surface of the visceral peritoneum. The presence of the peritoneal surface invasiveness is the key to distinguish the two stages2. However, because the peritoneal mesothelial cell layer is very thin, it could be damaged during the surgery, postoperative treatment, and fixation3. Moreover, tumor-related inflammatory changes and fibrosis can damage the normal anatomy of the peritoneum, which makes it very difficult to accurately judge the peritoneal surface invasion using only H&E staining4. Current auxiliary diagnosis methods such as cytology and immunohistochemistry are of limited diagnostic value5,6 because they are false-positive or have a low cost-effectiveness.
The serosal membrane includes the peritoneum, pleura, and pericardium, and is composed of the mesothelium, a basement membrane, and a sub-mesothelial layer7. One common histological feature of the serosal membrane is the presence of an elastic lamina in the sub-mesothelial layer, adjacent to the mesothelial cells8,9. Elastic lamina has a strong anti-damaging ability and can serve as an alternative prognostic marker if the mesothelial cells are destroyed by severe tumor-related inflammation or fibrosis3. Elastic lamina mainly comprises of elastin and microfibril10, which can be visualized by elastic staining. The principal reason behind the use of the elastic staining is that the elastin forms a hydrogen bond with the phenolic group of resorcinol in the elastin solution, causing elastic fibers to be stained blue-black. After Van Gieson (VG) contrasting staining, collagen fibers can be stained red and muscle fibers and red blood cells can be stained yellow8,11,12,13.
The eighth edition of the TNM staging of lung cancer defines visceral pleural invasion (T2) as a tumor invasion beyond the elastic lamina or an invasion at the surface of the visceral pleura2. Studies on colorectal cancer have shown that the elastic lamina invasion in pT3 colorectal cancer may be the reason for poor prognoses. The 5-year disease-free and overall survival rate of colorectal cancer have also been proven to be like pT4a13,14,15. Based on our previous studies on elastic staining, elastic lamina invasion has been found to have a significant negative influence on the prognosis of pT3 gastric cancer and should be treated the same way as pT4a gastric cancer12. Hence, this simple and cost-effective method can help eliminate uncertainty in results obtained through H&E staining, and other common limitations associated with other auxiliary diagnosis methods, including cytology and immunohistochemistry, among others. This method can be used efficiently to diagnose peritoneal surface invasions of gastrointestinal cancer, especially in some ambiguous cases. It is convenient since H&E stain and other stains usually make it difficult to identify such invasions. This method also ensures a reliability of results since it is very selective, particularly to elastic fibers. Here, we conduct elastic staining to determine whether tumor cells have invaded the elastic lamina in pT3N0M0 gastric cancer12.
This method is used for identifying elastic fibers in tissues on formalin-fixed, paraffin-embedded sections, and may be used for frozen sections as well. Here, we choose paraffin-embedded sections for the best maintenance of cellular and tissue morphology. All the steps in this protocol take place at room temperature. A commercial staining kit which includes a potassium permanganate solution, an oxalic acid solution, an elastin solution, and a Van Gieson's solution is used in the presented study.
Between 1994 and 2005, patient samples were selected by two experienced gastrointestinal pathologists in the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, from patients who suffered gastrectomy of stomach neoplasms, with a postoperative pathological diagnosis of gastric cancer at the pT3N0M0 stage (according to the seventh TNM staging). This study was approved by the ethics review committee.
1. Sectioning
2. Deparaffinization and Rehydration of All Slides
3. Staining
4. Dehydration and Mounting
5. Microscopic Observation of the Slides
A successful elastic staining clearly reveals elastic lamina and cancer cells in pT3 gastric cancer. Figure 1 - low-power field, microscopically checked after elastin solution staining, prior to Van Gieson's counterstain as per the protocol mentioned - shows the elastic lamina is close to the serosal mesothelial cells and is stained blue-black in the form of filaments, and there is still a certain distance between the tumor cells and the elastic lamina. <...
This method proposed here provides an accurate approach for identifying the subserosal elastic lamina. The method can be used to evaluate whether tumor cells have invaded the elastic lamina in pT3N0M0 gastric cancer12. Elastic lamina is reddish in H&E-stained sections, which could not be easily distinguished from collagen fibers, and other existing auxiliary diagnosis methods, such as cytology and immunohistochemistry, also exerted limited diagnostic value. The finding of tumor cells in the pe...
The authors have nothing to disclose.
The authors thank the support in part from the National Natural Science Foundation (NO.81401902 and NO.81501992) and the Hunan Natural Science Foundation (NO.2017SK2134, NO.2018JJ2238). The manuscript is written by Guang Lei. The whole experiment is performed by Guang Lei and Haiyan Yang. The authors thank the assistance of pathologists and of fellows who follow up patients' data.
Name | Company | Catalog Number | Comments |
Elastin-Van Gieson staining kit | Baso | BA4083B | Used for staining of elastic fibers, collagen fibers and myofibers |
Permount TM Mounting Medium | MXB Biotechnologies | DAB-0033 | Used for mounting |
Ethanol | LMAI Bio | LM64-17-5 | 100% |
Xylene | LMAI Bio | LX820585 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved