Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, a protocol for medium- to high-throughput analysis of protein phosphorylation events at the cellular level is presented. Phospho flow cytometry is a powerful approach to characterize signaling aberrations, identify and validate biomarkers, and assess pharmacodynamics.

Abstract

Aberrant cell signaling plays a central role in cancer development and progression. Most novel targeted therapies are indeed directed at proteins and protein functions, and cell signaling aberrations may therefore serve as biomarkers to indicate personalized treatment options. As opposed to DNA and RNA analyses, changes in protein activity can more efficiently evaluate the mechanisms underlying drug sensitivity and resistance. Phospho flow cytometry is a powerful technique that measures protein phosphorylation events at the cellular level, an important feature that distinguishes this method from other antibody-based approaches. The method allows for simultaneous analysis of multiple signaling proteins. In combination with fluorescent cell barcoding, larger medium- to high-throughput data-sets can be acquired by standard cytometer hardware in short time. Phospho flow cytometry has applications both in studies of basic biology and in clinical research, including signaling analysis, biomarker discovery and assessment of pharmacodynamics. Here, a detailed experimental protocol is provided for phospho flow analysis of purified peripheral blood mononuclear cells, using chronic lymphocytic leukemia cells as an example.

Introduction

Phospho flow cytometry is used to analyze protein phosphorylation levels at single-cell resolution. The overall goal of the method is to map cellular signaling patterns under specified conditions. By exploiting the multiparameter capacity of flow cytometry, several signaling pathways can be analyzed simultaneously in different subsets of a heterogeneous cell population such as peripheral blood. These traits offer advantages over other antibody-based technologies such as immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), protein array, and reverse phase protein array (RPPA)1. Phospho flow cytometry can be combined with fluorescent ....

Protocol

Blood samples were received following written informed consent from all donors. The study was approved by the Regional Committee for Medical and Health Research Ethics of South-East Norway and the research on human blood was carried out in accordance with the Declaration of Helsinki8.

NOTE: Steps 1-3 should be performed under sterile conditions in a tissue culture hood.

1. Isolation of Peripheral Blood Mononuclear Cells (PBMCs).......

Representative Results

The main steps of the phospho flow cytometry protocol are illustrated in Figure 1A. In the presented example, CLL cells were stained with the barcoding reagent Pacific Blue at four dilutions. Three-dimensional barcoding can be performed by combining three barcoding dyes, as illustrated in Figure 1B. The individual samples are then deconvoluted by subsequent gating on each barcoding reagent versus SSC-A (

Discussion

Phospho flow cytometry is a powerful technique to measure protein phosphorylation levels in single cells. Since the method relies on staining with antibodies, phospho flow cytometry is limited by antibody availability. Furthermore, in order to obtain reliable results, all antibodies should be titrated and verified before use. A detailed protocol for titration of phospho-specific antibodies has been described elsewhere12. During panel design, consideration of the signal-to-noise ratio is critical. .......

Acknowledgements

This work was conducted in the lab of Professor Kjetil Taskén, and was supported by the Norwegian Cancer Society and Stiftelsen Kristian Gerhard Jebsen. Johannes Landskron and Marianne Enger are acknowledged for critical reading of the manuscript.

....

Materials

NameCompanyCatalog NumberComments
RPMI 1640 GlutaMAXThermoFisher Scientific61870-010Cell culture medium
Fetal bovine serumThermoFisher Scientific10270169Additive to cell culture medium
Sodium pyruvateThermoFisher Scientific11360-039Additive to cell culture medium
MEM non-essential amino acidsThermoFisher Scientific11140-035Additive to cell culture medium
LymphoprepAlere Technologies AS1114547Density gradient medium
Anti-IgMSouthern Biotech2022-01For stimulation of the B cell receptor
BD Phosflow Fix Buffer IBD557870Fixation buffer
BD Phosflow Perm Buffer IIIBD558050Permeabilization buffer
Alexa Fluor 488 5-TFPThermoFisher ScientificA30005Barcoding reagent
Pacific Blue Succinimidyl EsterThermoFisher ScientificP10163Barcoding reagent
Pacific Orange Succinimidyl Ester, Triethylammonium SaltThermoFisher ScientificP30253Barcoding reagent
Compensation beadsDefined by userCorrect species reactivity
Falcon tubesDefined by user
Eppendorf tubesDefined by user
96 well V-bottom platesDefined by userCompatible with the flow cytometer
CentrifugesDefined by userFor Eppendorf tubes, Falcon tubes and plates
Water bathDefined by userTemperature regulated
Flow cytometerDefined by userWith High Throughput Sampler (HTS)
NameCompanyCatalog NumberComments
Antigen
AKT (pS473)Cell Signaling Technologies4075Clone: D9E
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
ATF-2 (pT71)Santa Cruz Biotechnologysc-8398Clone: F-1
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
BLNK (pY84)Beckton Dickinson Pharmingen558443Clone: J117-1278
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Btk (pY223)/Itk (pY180)Beckton Dickinson Pharmingen564846Clone: N35-86
Reference: Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Btk (pY551)Beckton Dickinson Pharmingen558129Clone: 24a/BTK (Y551) 
Reference: Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Btk (pY551)/Itk (pY511)Beckton Dickinson Pharmingen558134Clone: 24a/BTK (Y551) 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
CD3ζ (pY142)Beckton Dickinson Pharmingen558489Clone: K25-407.69
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Histone H3 (pS10)Cell Signaling Technologies9716Clone: D2C8
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
IκBαCell Signaling Technologies5743Clone: L35A5
Reference: Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
LAT (pY171)Beckton Dickinson Pharmingen558518Clone: I58-1169
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Lck (pY505)Beckton Dickinson Pharmingen558577Clone: 4/LCK-Y505 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
MEK1 (pS298)Beckton Dickinson Pharmingen560043Clone: J114-64
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
NF-κB p65 (pS529)Beckton Dickinson Pharmingen558422Clone: K10-895.12.50
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
NF-κB p65 (pS536)Cell Signaling Technologies4887Clone: 93H1
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
p38 MAPK (pT180/Y182)Cell Signaling Technologies4552Clone: 28B10
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
p44/42 MAPK (pT202/Y204)Cell Signaling Technologies4375Clone: E10
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
p53 (pS15)Cell Signaling TechnologiesNNClone: 16G8
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS20)Cell Signaling TechnologiesNNClone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS37)Cell Signaling TechnologiesNNClone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS46)Cell Signaling TechnologiesNNClone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
p53 (pS392)Cell Signaling TechnologiesNNClone: Polyclonal
Reference: Irish et al., 2007, Flt3 Y591 duplication and Bcl-2 overexpression…, Blood, 109(6):2589-96
PLCγ2 (pY759)Beckton Dickinson Pharmingen558498Clone: K86-689.37
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
Rb (pS807/pS811)Beckton Dickinson Pharmingen558590Clone: J112-906
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
S6-Ribos. Prot. (pS235/236)Cell Signaling Technologies4851Clone: D57.2.2E
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
SAPK/JNK (pT183/Y185)Cell Signaling Technologies9257Clone: G9
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Pollheimer et al., 2013, Interleukin-33 drives a proinflammatory endothelial…, Arterioscler Thromb Vasc Biol, 33(2):e47-55
SLP76 (pY128)Beckton Dickinson Pharmingen558438Clone: J141-668.36.58 
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
STAT1 (pY701)Beckton Dickinson Pharmingen612597Clone: 4a 
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
STAT3 (pY705)Beckton Dickinson Pharmingen557815Clone: 4/P-STAT3
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
STAT4 (pY693)Zymed/ThermoFisher Scientific71-7900Clone: Polyclonal
Reference: Uzel et al., 2001, Detection of intracellular phosphorylated STAT-4 by flow cytometry, Clin Immunol, 100(3): 270-6
STAT5 (pY694)Beckton Dickinson Pharmingen612599Clone: 47/Stat5(pY694)
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770
STAT6 (pY641)Beckton Dickinson Pharmingen612601Clone: 18/P-Stat6
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
SYK (pY525/Y526)Cell Signaling Technologies12081Clone: C87C1
Reference: Myhrvold et al., 2018, Single cell profiling of phospho-protein levels in.., Oncotarget, 9(10):9273-9284
Parente-Ribes et al., 2016, Spleen tyrosine kinase inhibitors reduce…, Haematologica, 101(2):e59-62
ZAP70/SYK (pY319/Y352)Beckton Dickinson Pharmingen557817Clone: 17A/P-ZAP70
Reference: Skånland et al., 2014, T-cell co-stimulation through the CD2 and CD28…, Biochem J, 460(3):399-410
Kalland et al., 2012, Modulation of proximal signaling in normal and transformed…, Exp Cell Res, 318(14):1611-9
Myklebust et al., 2017, Distinct patterns of B-cell receptor signaling in…, Blood, 129(6): 759-770

References

Explore More Articles

Phospho Flow CytometryFluorescent Cell BarcodingSingle Cell Signaling AnalysisBiomarker DiscoveryCell BiologyImmunologySignaling PathwaysStimuliDrugsHigh ThroughputRPMI 16 40 MediumFixed BufferAnti IgMPBSBarcoding ReagentsPerm BufferCompensation Control

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved