JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

CRISPR-Cas9-based Genome Engineering to Generate Jurkat Reporter Models for HIV-1 Infection with Selected Proviral Integration Sites

Published: November 14th, 2018

DOI:

10.3791/58572

1Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 2Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 3German Center for Infection Research (DZIF)
* These authors contributed equally

We present a genome engineering workflow for the generation of new in vitro models for HIV-1 infection that recapitulate proviral integration at selected genomic sites. Targeting of HIV-derived reporters is facilitated by CRISPR-Cas9-mediated, site-specific genome manipulation. Detailed protocols for single-cell clone generation, screening, and correct targeting verification are provided.

Human immunodeficiency virus (HIV) integrates its proviral DNA non-randomly into the host cell genome at recurrent sites and genomic hotspots. Here we present a detailed protocol for the generation of novel in vitro models for HIV infection with chosen genomic integration sites using CRISPR-Cas9-based genome engineering technology. With this method, a reporter sequence of choice can be integrated into a targeted, chosen genomic locus, reflecting clinically relevant integration sites.

In the protocol, the design of an HIV-derived reporter and choosing of a target site and gRNA sequence are described. A targeting vector with homology arms is constructed and transfected into Jurkat T cells. The reporter sequence is targeted to the selected genomic site by homologous recombination facilitated by a Cas9-mediated double-strand break at the target site. Single-cell clones are generated and screened for targeting events by flow cytometry and PCR. Selected clones are then expanded, and correct targeting is verified by PCR, sequencing, and Southern blotting. Potential off-target events of CRISPR-Cas9-mediated genome engineering are analyzed.

By using this protocol, novel cell culture systems that model HIV infection at clinically relevant integration sites can be generated. Although the generation of single-cell clones and verification of correct reporter sequence integration is time-consuming, the resulting clonal lines are powerful tools to functionally analyze proviral integration site choice.

Integration of proviral DNA into the host genome upon infection is a critical step in the life cycle of human immunodeficiency virus (HIV). Following integration, HIV persists by establishing latency in long-lived CD4+ T cell subsets such as memory CD4+ T cells. HIV integration appears to be non-random1,2. A number of genomic hotspots with recurrently integrated proviral DNA has been detected in several studies through the sequencing of integration sites in acutely and chronically infected individuals2,3,4,....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Targeting Strategy for Genome Engineering and Targeting Vector (tv) Design

NOTE: The first step of genome engineering involves selection and generation of the necessary tools for CRISPR-Cas9-mediated targeting. Selection of a genomic integration site locus, choice of cell type for targeting, and design of an HIV-derived reporter for integration should precede this step. This protocol describes targeting of an HIV-LTR_tdTomato_BGH-PA minimal reporter into Jurkat target cells. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this representative experiment we have chosen to target a minimal HIV-1-derived reporter consisting of a LTR, tdTomato-coding sequence, and polyA-signal sequence to two loci in intron 5 of the BACH2 gene17. The loci for targeting were chosen according to proximity to published recurrent integration sites found in different studies on primary T cells from HIV-infected patients2,4,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here, we describe a protocol to generate HIV-1-derived Jurkat reporter models with chosen proviral integration sites applying CRISPR-Cas9-based genome engineering.

Several points of the protocol require careful attention during the planning stage. First, the locus to be targeted should be chosen carefully, as some loci might be easier to target than others (e.g., depending on the chromatin status of the region and the target sequence itself). Repetitive sequences are hard to clone int.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Britta Weseloh and Bettina Abel for technical assistance. We also thank Arne Düsedau and Jana Hennesen (flow cytometry technology platform, Heinrich Pette Institut) for technical support.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
pX330-U6-Chimeric_BB-cBh-hSpCas9 Addgene 42230 vector for expression of SpCas9 and gRNA
pMK GeneArt mammalian expression vector for cloning
cDNA3.1 Invitrogen V79020 mammalian expression vector for cloning
BbsI New England Biolabs R0539S restriction enzyme
NEBuilder Hifi DNA Assembly Cloning Kit New England Biolabs E5520S Assembly cloning kit used for target vector generation
TaqPlus Precision PCR System Agilent Technologies 600210 DNA polymerase with proofreading activity used for amplification of homology arms (step 1.2.2.2), verification of integration site and reporter sequence (step 3.3.3 and 3.3.5), generation of genomic probe for Southern blot (step 3.4.1.5) and analysis of off-target events (step 3.5.4)
96-well tissue culture plate (round-bottom) TPP 92097 tissue culture plates for dilution plating
Phusion High-Fidelity DNA polymerase New England Biolabs M0530 L DNA polymerase used for detection of targeting events (step 2.4.2) and generation ofreporter-specific probe for Southern blot (step 3.4.1.4)
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D9170 dimethyl sulfoxide as PCR additive
Magnesium Chloride (MgCl2) Solution New England Biolabs B9021S MgCl2 solution as PCR additive
Deoxynucleotide (dNTP) Solution Mix New England Biolabs N0447S dNTP mixture with 10 mM of each nt for PCR reactions
5PRIME HotMasterMix 5PRIME 2200400 ready-to-use PCR mix used for screening PCR (step 3.2.11)
QIAamp DNA blood mini kit Qiagen 51106 DNA isolation and purification kit
QIAquick PCR Purification Kit Qiagen 28106 PCR Purification Kit
RPMI 1640 without glutamine Lonza BE12-167F cell culture medium
Fetal Bovine Serum South Africa Charge PAN Biotech P123002 cell culture medium supplement
L-glutamine Biochrom K 0282 cell culture medium supplement
Penicillin/Streptomycin 10.000 U/ml / 10.000 µg/ml Biochrom A 2212 cell culture medium supplement
Gibco Opti-MEM Reduced Serum Media Thermo Fisher Scientific 31985062 cell culture medium with reduced serum concentration optimized for transfection
TransIT-Jurkat Mirus Bio MIR2125 transfection reagent
phorbol 12-myristate 13-acetate Sigma-Aldrich P8139-1MG cell culture reagent
Ionomycin Sigma-Aldrich I0634-1MG cell culture reagent
Syringe-driven filter unit, PES membrane, 0,22 µm Millex SLGP033RB filter unit for sterile filtration
Heracell 150i incubator Thermo Fisher Scientific 51026280 tissue culture incubator
Amershan Hybond-N+ GE Healthcare RPN1520B positively charged nylon membrane for DNA and RNA blotting
Stratalinker 1800 Stratagene 400072 UV crosslinker
High Prime Roche 11585592001 kit for labeling of DNA with radioactive dCTP using random oligonucleotides as primers
illustra ProbeQuant G-50 Micro Columns GE Healthcare 28-9034-08 chromatography spin-columns for purification of labeled DNA

  1. Hughes, S. H., Coffin, J. M. What Integration Sites Tell Us about HIV Persistence. Cell Host and Microbe. 19 (5), 588-598 (2016).
  2. Marini, B., Kertesz-Farkas, A., et al. Nuclear architecture dictates HIV-1 integration site selection. Nature. 521 (7551), 227-231 (2015).
  3. Cesana, D., Santoni de Sio, F. R., et al. HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nature Communications. 8 (1), 498 (2017).
  4. Cohn, L. B., Silva, I. T., et al. HIV-1 Integration Landscape during Latent and Active Infection. Cell. 160 (3), 420-432 (2015).
  5. Han, Y., Lassen, K., et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. Journal of Virology. 78 (12), 6122-6133 (2004).
  6. Ikeda, T., Shibata, J., Yoshimura, K., Koito, A., Matsushita, S. Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. The Journal of Infectious Diseases. 195 (5), 716-725 (2007).
  7. Wagner, T. A., Mclaughlin, S., et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 345 (6196), 570-573 (2014).
  8. Maldarelli, F., Wu, X., et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 345 (6193), 179-183 (2014).
  9. Jordan, A., Bisgrove, D., Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. The EMBO Journal. 22 (8), 1868-1877 (2003).
  10. Mack, K. D., Jin, X., et al. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. Journal of Acquired Immune Deficiency Syndromes. 33 (3), 308-320 (2003).
  11. Byrne, S. M., Ortiz, L., Mali, P., Aach, J., Church, G. M. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Research. 43 (3), 1-12 (2014).
  12. CRISPR Genome Engineering Toolbox: Target Sequence Cloning Protocol. Addgene website Available from: https://www.addgene.org/static/cms/filer_public/e6/5a/e65a9ef8-c8ac-4f88-98da-3b7d7960394c/zhang-lab-general-cloning-protocol.pdf (2013)
  13. Gibson Assembly Protocol. Addgene website Available from: https://www.addgene.org/protocols/gibson-assembly/ (2009)
  14. Addgene Plasmid Cloning by PCR. Addgene website Available from: https://www.addgene.org/protocols/pcr-cloning/ (2014)
  15. Addgene Plasmid Cloning by Restriction Enzyme Digest (aka Subcloning). Addgene website Available from: https://www.addgene.org/protocols/subcloning/ (2013)
  16. Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., Mateo, J. L. CCTop: An intuitive, flexible and reliable CRISPR-Cas9 target prediction tool. Public Library of Science (PLoS) ONE. 10 (4), (2015).
  17. Lange, U. C., Bialek, J. K., Walther, T., Hauber, J. Pinpointing recurrent proviral integration sites in new models for latent HIV-1 infection. Virus Research. 249, (2018).
  18. Bialek, J. K., Dunay, G. A., et al. Targeted HIV-1 Latency Reversal Using CRISPR-Cas9-Derived Transcriptional Activator Systems. PloS ONE. 11 (6), e0158294 (2016).
  19. Lee, C. M., Davis, T. H., Bao, G. Examination of CRISPR-Cas9 design tools and the effect of target site accessibility on Cas9 activity. Experimental Physiology. 103 (4), 456-460 (2018).
  20. Jensen, K. T., Fløe, L., et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Letters. 591 (13), 1892-1901 (2017).
  21. Simonetti, F. R., Sobolewski, M. D., et al. Clonally expanded CD4 + T cells can produce infectious HIV-1 in vivo. Proceedings of the National Academy of Sciences. 113 (7), 1883-1888 (2016).
  22. Chen, H. C., Martinez, J. P., Zorita, E., Meyerhans, A., Filion, G. J. Position effects influence HIV latency reversal. Nature Structural and Molecular Biology. 24 (1), 47-54 (2017).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved