A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol demonstrates how to purify extracellular microRNAs from cell culture media for small RNA library construction and next generation sequencing. Various quality control checkpoints are described to allow readers to understand what to expect when working with low input samples like exRNAs.
Extracellular and circulating RNAs (exRNA) are produced by many cell types of the body and exist in numerous bodily fluids such as saliva, plasma, serum, milk and urine. One subset of these RNAs are the posttranscriptional regulators – microRNAs (miRNAs). To delineate the miRNAs produced by specific cell types, in vitro culture systems can be used to harvest and profile exRNAs derived from one subset of cells. The secreted factors of mesenchymal stem cells are implicated in alleviating numerous diseases and is used as the in vitro model system here. This paper describes the process of collection, purification of small RNA and library generation to sequence extracellular miRNAs. ExRNAs from culture media differ from cellular RNA by being low RNA input samples, which calls for optimized procedures. This protocol provides a comprehensive guide to small exRNA sequencing from culture media, showing quality control checkpoints at each step during exRNA purification and sequencing.
Extracellular and circulating RNAs (exRNAs) are present in various bodily fluids and are resistant towards RNases1,2. Their high abundance, stability and ease of accessibility are attractive for clinical assessment as diagnostic and prognostic markers3. The mode of transport for exRNAs include extracellular vesicles (EVs), association with lipoproteins (such as high-density lipoprotein; HDL) and ribonucleoprotein complexes (such as with Argonaute2 complexes)4.
A subset of exRNAs are microRNAs (miRNAs), which are small non-coding RNAs of about 22 nt that regulate posttranscriptional gene expression. Ex-miRNAs have been implicated in cell-cell communication and regulation of cell homeostasis5. For example, HDL delivers ex-miR-223 to endothelial cells to repress intercellular adhesion molecule 1 (ICAM-1) and inflammation6. Interestingly, miR-223 is also seen transported by extracellular vesicles from leukocytes to lung cancer cells, programming them to take on a more invasive phenotype7. Thus, the transcriptome of ex-miRNAs from various bodily fluids and cell culture medium will greatly improve our understanding of ex-miRNA signaling.
Small RNA sequencing (small RNA seq) is a powerful tool that can be used to understand the transcriptomics of small RNAs. Not only can different samples be compared amongst differentially expressed known RNAs, but novel small RNAs can also be detected and characterized. Consequently, it is also a robust method to identify differentially expressed miRNAs under different conditions. However, one of the hurdles of small RNA seq is the difficulty in generating small RNA seq libraries from low exRNA input fluids like cerebrospinal fluids, saliva, urine, milk, serum and culture media. The TruSeq Small RNA Library Prep protocol from Illumina requires approximately 1 µg of high quality total RNA and the NEBNext Small RNA Library Prep Set protocol from New England Biolabs requires 100 ng-1 µg of RNA8,9. Oftentimes, total RNA from these samples are below detection limit for conventional UV-vis spectrophotometers.
Ex-miRNAs derived from bodily fluids are potentially good prognostic and diagnostic markers. However, in order to study the functional effects or to determine the origin of specific ex-miRNAs, cell culture systems are often used instead. Mesenchymal stem cells (MSCs) have been studied extensively because their EVs have been implicated in alleviating many diseases including myocardial infarction, Alzheimer's disease and graft versus host disease10. Here, we demonstrate the purification of ex-miRNAs from bone marrow-derived MSCs (BMSCs) and the specific steps used to optimize small RNA library construction, sequencing and data analysis (Figure 1).
NOTE: Mesenchymal stem cell growth medium (MSC media) is prepared beforehand as indicated in the Table of Materials.
1. Cell culture
NOTE: Human mesenchymal stem cells can be obtained from the bone marrow, adipose tissue or other sources11. Alternatively, hMSCs can be bought through a supplier. The BMSCs used in this protocol were derived from the bone marrow of patients and bought from a company.
2. EVs and RNA-associated biomolecules collection
NOTE: EV collection media is prepared beforehand (Dulbecco's Modified Eagle's Medium [DMEM] with 10% fetal bovine serum [FBS] and 1% penicillin/streptomycin [P/S]). EV collection media is normal MSC media, but prepared with commercial EV-depleted FBS (Table of Materials). This is to avoid bovine exRNA contamination from FBS, which normally contains exRNAs associated with EVs, ribonucleoproteins, and lipoproteins. For small RNA library preparation, exRNAs derived from 5 confluent flasks of MSCs are required to enable library construction.
3. EVs and RNA-associated biomolecules collection of differentiated cells
NOTE: EVs and RNA associated biomolecules can also be collected from the cell culture media while the cells undergo differentiation. The example depicted in the protocol describes osteoblastic differentiation and exRNA collection at day 0 and 7 of differentiation. If no differentiation is required, then skip Section 3 and go to Section 4.
4. RNA extraction and quality control
5. Library construction and quality control
NOTE: Small RNA libraries are constructed using commercial kits (Table of Materials) with adjustments due to the low RNA input. Library construction is performed on the chilled block.
6. Bioinformatics pipeline
NOTE: This is an in-house pipeline and the programs used here are listed in the Table of Materials.
The method described in this protocol is optimized to collect exRNA from MSC culture for next generation sequencing. The overall scheme of the workflow is in Figure 1 on the left and the respective quality control checkpoints are on the right.
The morphology of the cells on the day of collection for undifferentiated (Figure 3A) and differentiated (F...
Here, we describe a protocol for next generation sequencing of exRNAs that enables differential expression analyses from low input samples. Adhering to a specific protocol for EV and exRNA isolation is important because even small alterations (i.e., the ultracentrifugation step or a change in rotor type) can influence the transcriptome and miRNA levels13,14. Thus, regardless of how the exRNA is isolated, it is important to apply the same experimental and bioinfor...
The authors have nothing to disclose.
We are grateful to Mr. Claus Bus and Ms. Rita Rosendahl at iNANO for their technical assistance. Special thanks to Dr. Daniel Otzen for allowing our frequent use of his ultracentrifuge. This study was supported by the Innovation Fund Denmark (MUSTER project).
Name | Company | Catalog Number | Comments |
Bone Marrow-Derived Mesenchymal Stem Cells | ATCC | PCS-500-012 | Cells used in this protocol was bought from ATCC |
MSCGM BulletKit | Lonza | PT-3001 | Termed as Mesenchymal Stem Cell Growth Medium (MSC media) |
Exosome-depleted FBS | Gibco | A2720801 | |
ExRNA collecting media: MSCGM but with the FBS replaced by exosome-depleted FBS | |||
Trypsin-EDTA | Gibco | 25200056 | |
T175 Flask | Sarstedt | 833,912 | |
Penicillin-Streptomycin | Gibco | 15140122 | |
Phosphate Buffered Saline | Sigma | 806552 | |
Ultracentrifuge | Beckman Coulter | ||
Polycarbonate Bottle with Cap Assembly | Beckman Coulter | 355618 | |
Beckman Coulter Type 60 Ti | Rotor used here | ||
NucleoCounter | Chemometec | NC-3000 | Cell Counter |
β-glycerophosphate | Calbiochem | 35675 | Components of the osteogenic differentiation media |
Dexamethasone | Sigma | D4902-25MG | Components of the osteogenic differentiation media |
2-Phospho-L-ascorbic acid trisodium salt | Sigma | 49752-10G | Components of the osteogenic differentiation media |
1α,25-Dihydroxyvitamin D3 | Sigma | D1530-1MG | Components of the osteogenic differentiation media |
miRNeasy Mini Kit | Qiagen | 217004 | miRNA and total RNA purification kit for step 4.8 |
Agilent RNA 6000 Pico Kit | Agilent Technologies | 5067-1514 | Chip-based capillary electrophoresis machine and chips for RNA and DNA analysis |
Agilent 2100 Bioanalyzer | Agilent Technologies | G2939BA | Chip-based capillary electrophoresis machine and chips for RNA and DNA analysis |
Agilent High Sensitivity DNA Kit | Agilent Technologies | 5067-4626 | Chip-based capillary electrophoresis machine and chips for RNA and DNA analysis |
KAPA Library Quantification Kits | Roche | KK4824 | Library quantification kit used here |
TruSeq Small RNA Library Prep Kit -Set A (24 rxns) (Set A: indexes 1-12) | Illumina | RS-200-0012 | Small RNA library prepartion kit used in this protocol - used in step 5 |
Pippin Prep | Sage Science | Automated DNA gel extractor used in this protocol; manual extraction can be done too | |
MinElute PCR Purification Kit | Qiagen | 28004 | PCR purification in step 5.17 |
FASTX_Toolkit | Cold Spring Harbor Lab | Trimming low-quality reads in step 6 | |
cutadapt | Adaptor removal in step 6 | ||
Bowtie | Mapping of clean reads in step 6 | ||
Samtools | To make the expression profile in step 6 | ||
Bedtools | To make the expression profile in step 6 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved