JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article describes protocols to assess the effect of fluorescent proteins on the aggregation and toxicity of misfolded polyglutamine expansion for the rapid evaluation of a newly uncharacterized fluorescent protein in the context of fluorescent reporters.

Abstract

For the investigation of protein localization and trafficking using live cell imaging, researchers often rely on fusing their protein of interest to a fluorescent reporter. The constantly evolving list of genetically encoded fluorescent proteins (FPs) presents users with several alternatives when it comes to fluorescent fusion design. Each FP has specific optical and biophysical properties that can affect the biochemical, cellular, and functional properties of the resulting fluorescent fusions. For instance, several FPs tend to form nonspecific oligomers that are susceptible to impede on the function of the fusion partner. Unfortunately, only a few methods exist to test the impact of FPs on the behavior of the fluorescent reporter. Here, we describe a simple method that enables the rapid assessment of the impact of FPs using polyglutamine (polyQ) toxicity assays in the budding yeast Saccharomyces cerevisiae. PolyQ-expanded huntingtin proteins are associated with the onset of Huntington's disease (HD), where the expanded huntingtin aggregates into toxic oligomers and inclusion bodies. The aggregation and toxicity of polyQ expansions in yeast are highly dependent on the sequences flanking the polyQ region, including the presence of fluorescent tags, thus providing an ideal experimental platform to study the impact of FPs on the behavior of their fusion partner.

Introduction

Since the initial characterization of the green fluorescent protein (GFP) from Aequorea victoria1, a wide palette of genetically encoded FPs have been developed, allowing cell biologists to simultaneously localize and track multiple cellular events/proteins in living cells2,3. FPs are derived from multiple organisms, from jellyfish to coral, and therefore, display specific biophysical properties that divert extensively beyond their respective fluorescent spectrum. These properties include brightness, photostability, and a tendency to oligomerize among others2,4. Selecting monomeric FPs is an important aspect in the selection of a suitable tag when designing a fluorescent reporter, in order to minimize inappropriate interactions and alterations of the fusion partner's function and maximize the reporter efficiency for a given cellular compartment4,5,6. While GFP has, over time, been evolved to minimize the effect of adding the fluorescent tag to the fusion partner5,7,8, how new FP variants perform compared to GFP remains difficult to assess.

Few methods exist to characterize the behavior of FPs. Most of them involve testing biophysical properties of FPs using biochemical approaches, such as ultracentrifugation and gel filtration protocols9,10,11,12. Such methods have the caveat of using purified FPs in solution, offering little insight into their behavior in intact cells. The development of the organized smooth endoplasmic reticulum (OSER) assay offers a quantifiable assessment of FPs' tendency to oligomerize in living cells13 by testing the ability of overexpressed FPs to reorganize endoplasmic reticulum tubules into OSER whorls14. This technique can successfully detect changes between monomeric and oligomeric variants of GFP and other FPs. However, it relies mostly on overexpression in transiently transfected cells, and the quantitation and image analysis can be time-consuming unless the technique is adopted as an automated data collection and analysis workflow.

In order to complement these approaches, we established an assay that takes advantage of the effect of fluorescent tags on the toxicity and aggregation of polyQ expansions in yeast15,16. The expansion of the polyQ stretch with more than 36 repeats within the first exon of the gene encoding the huntingtin protein (Htt) is associated with Huntington's disease17,18. The expression of expanded Httex1 in yeast results in a strong aggregation of the misfolded Htt protein coupled to a severe growth defect. Interestingly, these phenotypes are strongly influenced by the sequences flanking the polyQ stretch, including FPs15,16. It was rationalized that the different properties of FPs can differentially affect polyQ toxicity in yeast. Indeed, compared to GFP-like FPs, red fluorescent proteins and their evolved forms have shown a reduced toxicity and aggregation16. This manuscript provides a detailed protocol to assess the effect of the next generation of FPs on polyQ toxicity and aggregation in yeast. This assay allows for a rapid and potentially high-content analysis of FP variants that can be used in parallel with previously characterized techniques for the optimal characterization of new FPs and can assess how they perform compared to GFP.

Protocol

1. Generation of New Fluorescently Tagged Httex1 Reporters for an Expression in Yeast

Note: This section has been modified from the protocol by Jiang et al.16 and Albakri et al.19.

  1. Design primers to amplify the sequence encoding the fluorescent protein or interest by PCR. The forward primer should include a leader sequence to assist the restriction enzyme during digestion (GATC), followed by a SpeI restriction site (ACTAGT) and 20 bases downstream of the ATG (excluding ATG) of the fluorescent protein gene of interest. The reverse primer should include the leader sequence (GATC), followed by a SalI restriction site (GTCGAC) and the reverse complement of 20 bases upstream of the stop codon of the FP sequence (including stop).
  2. Using the primers designed in step 1.1, perform the PCR reaction using a thermocycler with the following settings: heat to 95 °C for 1 min and cycle at 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 2 min per kB of PCR product. Performing 18 cycles is ample.
  3. Run the PCR reaction on an agarose gel (0.5% in Tris-acetate-EDTA). There should a single band corresponding to the expected product size. Isolate the fragment using a gel purification kit.
  4. The protocol employs an Httex1 vector carrying 25 (nontoxic) and 72 (HD-associated, displaying a strong aggregation) polyQ repeats. Digest both the PCR fragments and the vector with SpeI and SalI restriction enzymes for 3 h at 37 °C.
  5. Purify the digested vector by running it on an agarose gel as in step 1.3.
  6. Purify the digested PCR fragment using a PCR purification kit.
  7. Ligate the resulting digested PCR fragment and p415-GAL1-FLAG-25/72QpolyQ plasmids1 using T4 ligase (1 h at room temperature). Use a 10 µL reaction (1 µL of T4 enzyme, 1 µL of 10X buffer, 6 µL of PCR fragment, and 2 µL of vector).
  8. Transform 2 µL of the ligation reaction into 50 µL of Escherichia coli-competent cells and incubate them on ice for 30 min. Then, heat-shock the cells at 42 °C for 30 s. Add 1 mL of SOC outgrowth media and incubate at 37 °C for 1 h in a shaker. Plate 200 µL of the reaction on an LB-agar plate containing 100 µg/mL ampicillin. Incubate the plate at 37 °C overnight.
  9. Select three individual bacterial colonies, grow them overnight in 3 mL of LB-broth containing 100 µg/mL ampicillin at 37 °C in a shaker and extract the plasmid DNA using a plasmid purification kit.
  10. Check the plasmid by digesting 500 ng of DNA using SpeI and SalI restriction enzymes for 1 h at 37 °C and run the reaction on an agarose gel (0.5% in Tris-acetate-EDTA). There should be two bands at the right sizes of the vector (~7 kb) and the insert (size varies according to the gene of interest). Then, verify the plasmid by sequencing.
  11. Transform the p415-GAL1-FLAG-polyQ-FP plasmids into the yeast strain W303 following a standard yeast transformation protocol2.

2. Spotting Assay

  1. Streak the yeast clones carrying 25Q/72Q tagged with the FP of interest on an agar plate containing yeast selection media (synthetic complete-SC without leucine) with glucose as the carbon source. At the same time, also streak 25Q/72Q-ymsfGFP to serve as a positive control.
    Note: 25Q/72Q constructs that do not contain a fluorescent tag are not toxic and can serve as negative control.
  2. Incubate the plates at 30 °C for 2 - 3 d.
  3. Select up to three single colonies from the plate.
  4. Inoculate 5 mL of SC supplemented with 2% glucose as the carbon source.
  5. Pellet 200 µL of each overnight culture and wash it 3x with sterile distilled water.
  6. Resuspend the cells in SC media containing 2% galactose as the carbon source to induce the expression of polyQ fusions. Incubate the galactose media overnight at 30 °C in a tube rotator. As a control, repeat this step by using glucose-containing media.
  7. The next morning, equalize the cell densities to optical density at 600 nm (OD600) of 0.2 in 100 µL of SC media in a sterile 96-well plate.
  8. Prepare four fivefold dilutions of each sample with sterile water by pipetting 20 µL of the sample from the previous well into 80 µL of media in the next well.
  9. Use a yeast pinning tool to spot the cells onto selective plates (containing glucose or galactose) and incubate at 30 °C for 2 d.
  10. Image the plates with an image documentation device.

3. Quantification of Cell Growth in Liquid Culture

  1. Prepare the cell cultures, following steps 2.1 - 2.5 of this protocol.
  2. Measure the OD600 using a spectrophotometer.
  3. Dilute the cells to an OD600 of 0.1 in 300 µL of media in a 96-well plate.
  4. Run each sample in triplicate.
  5. Incubate the plate in a plate reader/incubator with shaking capabilities. Set the number of samples, the temperature at 30 °C, the absorbance at 600 nm, the length of the experiments to 24 h, and the measurement intervals to 15 min, and select the continuous shaking mode.
  6. Create the growth curve and quantify the area under the curve using scientific graphing software. The GraphPad Prism 7 is recommended. Paste the data into an XY table with three replicate values. The growth curve will be shown under the Graphs folder at the left side. To quantify the area under the curve, select Analyze at the top left and click Area under curve in XY analyses.

4. Fluorescent Microscopy

  1. Prepare the cell cultures, following steps 2.1 - 2.5 of this protocol.
  2. Dilute the cells 10x in growth media and transfer 200 µL of each sample to 8-well imaging chambers.
  3. Image the cells using a confocal microscope equipped with a 63X Plan Aprochromoat objective (1.4 NA) at room temperature.
    Note: The usage of a confocal microscope is optional. A standard wide-field fluorescent microscope can also be employed.
  4. Adjust the pinhole and laser power for optimal image acquisition. Since the 72Q aggregates are much brighter than the diffuse 25Q signal, it is often required to use a different acquisition setting between the different plasmids in order to avoid saturation of the fluorescent signal.
  5. Process the images using ImageJ20 or another image-processing software. At this step, the percentage of cells that display aggregate can be calculated manually is desired.

5. Dot Blot

Note: In this protocol, dot blot is used to examine the protein expression levels. Prepare the cell cultures, following steps 2.1 - 2.5 of this protocol.

  1. Generate protein lysates using glass beads in lysis buffer (100 mM Tris, pH 7.5; 200 mM NaCl; 1 mM EDTA; 5% glycerol, 1 mM dithiothreitol [DTT]). Add protease inhibitors, 4 mM phenylmethylsulfonyl fluoride (PSMF) and protease inhibitor cocktail, directly before use. Pellet 5 mL of the overnight culture and resuspend it in 200 µL of glass beads and 200 µL of lysis buffer. Vortex 30 s for 12 rounds. Centrifuge at 12,000 x g at 4 °C for 10 min and collect the supernatant.
  2. Spot an equal amount of total proteins on a nitrocellulose membrane using a microfiltration apparatus. Prewet the membrane with PBS and assemble the apparatus. Connect to a vacuum source and make sure the screws are tightened. Turn on the vacuum and let the sample filter through the membrane by gravity.
  3. Block the membrane in PBS- 0.05% Tween/5% fat-free milk.
  4. Incubate the membrane with primary anti-FLAG antibody overnight at 4 °C. The monoclonal anti-FLAG M1 is recommended.
  5. Wash the membrane 3x for 10 min each with PSB- 0.05% Tween.
  6. Incubate the membrane with a fluorescently labeled secondary antibody (anti-mouse IgG) for 1 h at room temperature in PBS- 0.05% Tween/5% fat-free milk.
  7. Wash membrane 3x 10 min with PSB- 0.05% Tween.
  8. Image-blot using an immunoblot documentation system.

Results

FPs have different biophysical properties, including their tendency to oligomerize, that can affect the behavior of their fusion partners in the context of fluorescent reporters. This protocol describes a simple method where multiple FPs can be fused to toxic polyQ expansions. Since polyQ toxicity is highly dependent on the sequences flanking the polyQ stretch15, this assay allows a rapid and direct comparison of fluorescent polyQ fusion reporters (

Discussion

In this article, various assays to measure the aggregation of Httex1 polyQ expansions and their effect on yeast growth were employed as a model to study how different fluorescent proteins alter their fusion partners in the context of fluorescent reporters. Using a GFP variant (ymsfGFP) as a positive control, we showed that this detects significant changes in polyQ toxicity and aggregation between different fluorescent tags and allows for a direct and rapid comparison of the polyQ-FP fusion performance against ...

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study is supported by an operating grant from the Canadian Institutes for Health Research to M.L.D. and P.L. The work presented here is supported by a John R. Evans Leader Fund award from the Canadian Foundation for Innovation and a matching fund from the Ontario Research Fund to P.L. Y.J. is supported by an MSc to PhD transfer scholarship from the Dean of the Schulich School of Medicine and Dentistry at The University of Western Ontario. S.D.G. is supported by a PhD Scholarship from ALS Canada.

Materials

NameCompanyCatalog NumberComments
5-alpha Competent E. coli (High efficiency)New Englanfd BiolabC2987
SpeI-HFNew Englanfd BiolabR3133High fidelity enzymes are preferred
SalI-HFNew Englanfd BiolabR0138High fidelity enzymes are preferred
AgaroseFisher ScientificBP160
LB-AgarFisher ScientificBP1425
LB-BrothFisher ScientificBP1426
AmpicilinFisher ScientificBP1760
PfuUltra High-fidelity DNA PolymeraseAgilent Technologies600382
EPOCH2 microplate spectrophotometerBioTek Instruments incEPOCH2TC
Yeast Pin ReplicatorV&P Scientific inc.VP407AH
SPI imagerS&P Robotics inc.spImager-M
Zeiss LSM 800 confocal with AryScanCarl Zeiss MicroscopyLSM 800
8 well Lab-Tek imaging chambersFisher Scientific12565470
Bio-Dot apparatusBio-Rad1706545
Chemi Doc XRS+Bio-Rad1708265
anti-FLAG M1 antibodySigma-AldrichF3040
Goat anti-mouse IgG alexa 555 secondary antibodyThermo A32727
Plasmid MiniPrep KitFisher ScientificK0503
Plasmid Gel extraction KitFisher ScientificK0831
PCR Purification KitFisher ScientificK0702
PrizmGraphPadN/A
TAE (Tris-Acetate-EDTA)Fisher ScientificBP13354

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science. 263 (5148), 802-805 (1994).
  2. Thorn, K. Genetically encoded fluorescent tags. Molecular Biology of the Cell. 28 (7), 848-857 (2017).
  3. Shcherbakova, D. M., Subach, O. M., Verkhusha, V. V. Red fluorescent proteins: advanced imaging applications and future design. Angewandte Chemie. 51 (43), 10724-10738 (2012).
  4. Snapp, E. L. Fluorescent proteins: a cell biologist's user guide. Trends in Cell Biology. 19 (11), 649-655 (2009).
  5. Costantini, L. M., et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nature Communications. 6, 7670 (2015).
  6. Costantini, L. M., Snapp, E. L. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA and Cell Biology. 32 (11), 622-627 (2013).
  7. Yang, F., Moss, L. G., Phillips, G. N. The molecular structure of green fluorescent protein. Nature Biotechnology. 14 (10), 1246-1251 (1996).
  8. Zacharias, D. A., Violin, J. D., Newton, A. C., Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 296 (5569), 913-916 (2002).
  9. Pédelacq, J. -. D., et al. Engineering soluble proteins for structural genomics. Nature Biotechnology. 20 (9), 927-932 (2002).
  10. Baird, G. S., Zacharias, D. A., Tsien, R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America. 97 (22), 11984-11989 (2000).
  11. Laue, T. M., Stafford, W. F. Modern applications of analytical ultracentrifugation. Annual Review of Biophysics and Biomolecular Structure. 28, 75-100 (1999).
  12. Pédelacq, J. -. D., Cabantous, S., Tran, T., Terwilliger, T. C., Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology. 24 (1), 79-88 (2006).
  13. Costantini, L. M., Fossati, M., Francolini, M., Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic. 13 (5), 643-649 (2012).
  14. Snapp, E. L., et al. Formation of stacked ER cisternae by low affinity protein interactions. The Journal of Cell Biology. 163 (2), 257-269 (2003).
  15. Duennwald, M. L., Jagadish, S., Muchowski, P. J., Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proceedings of the National Academy of Sciences of the United States of America. 103 (29), 11045-11050 (2006).
  16. Jiang, Y., Di Gregorio, S. E., Duennwald, M. L., Lajoie, P. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic. 18 (1), 58-70 (2017).
  17. Penney, J. B., Vonsattel, J. P., MacDonald, M. E., Gusella, J. F., Myers, R. H. CAG repeat number governs the development rate of pathology in Huntington's disease. Annals of Neurology. 41 (5), 689-692 (1997).
  18. Gusella, J. F., MacDonald, M. E. Huntington's disease: seeing the pathogenic process through a genetic lens. Trends in Biochemical Sciences. 31 (9), 533-540 (2006).
  19. Albakri, M. B., Jiang, Y., Lajoie, P. Polyglutamine toxicity assays highlight the advantages of mScarlet for imaging in Saccharomyces cerevisiae [version 1; referees: 1 approved, 1 approved with reservations]. F1000Research. 7, 1242 (2018).
  20. Schindelin, J., Rueden, C. T., Hiner, M. C., Eliceiri, K. W. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development. 82 (7-8), 518-529 (2015).
  21. Duennwald, M. L. Yeast as a platform to explore polyglutamine toxicity and aggregation. Methods in Molecular Biology. 1017, 153-161 (2013).
  22. Duennwald, M. L., Jagadish, S., Giorgini, F., Muchowski, P. J., Lindquist, S. A network of protein interactions determines polyglutamine toxicity. Proceedings of the National Academy of Sciences of the United States of America. 103 (29), 11051-11056 (2006).
  23. Lee, S., Lim, W. A., Thorn, K. S. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. Plos One. 8 (7), e67902 (2013).
  24. Halfmann, R., Lindquist, S. Screening for amyloid aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis. Journal of Visualized Experiments. (17), e838 (2008).
  25. Sikorski, R. S., Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122 (1), 19-27 (1989).
  26. Thomas, B. J., Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell. 56 (4), 619-630 (1989).
  27. Brachmann, C. B., et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14 (2), 115-132 (1998).
  28. Meriin, A. B., et al. toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. The Journal of Cell Biology. 157 (6), 997-1004 (2002).
  29. Mumberg, D., Müller, R., Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 156 (1), 119-122 (1995).
  30. Keppler, A., et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnology. 21 (1), 86-89 (2003).
  31. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159 (3), 635-646 (2014).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Fluorescent ProteinsFusion PartnersPolyglutamine Toxicity AssaysYeast Expression VectorFLAG tagged HTTHuntington DiseaseGlucose As Carbon SourceGalactose InductionCell CulturesSynthetic Complete MediumOptical Density MeasurementGFP Positive Control

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved