A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Efficient solar-hydrogen production has recently been realized on functionalized semiconductor-electrocatalyst systems in a photoelectrochemical half-cell in microgravity environment at the Bremen Drop Tower. Here, we report the experimental procedures for manufacturing the semiconductor-electrocatalyst device, details of the experimental set-up in the drop capsule and the experimental sequence during free fall.

Abstract

Long-term space flights and cis-lunar research platforms require a sustainable and light life-support hardware which can be reliably employed outside the Earth's atmosphere. So-called 'solar fuel' devices, currently developed for terrestrial applications in the quest for realizing a sustainable energy economy on Earth, provide promising alternative systems to existing air-revitalization units employed on the International Space Station (ISS) through photoelectrochemical water-splitting and hydrogen production. One obstacle for water (photo-) electrolysis in reduced gravity environments is the absence of buoyancy and the consequential, hindered gas bubble release from the electrode surface. This causes the formation of gas bubble froth layers in proximity to the electrode surface, leading to an increase in ohmic resistance and cell-efficiency loss due to reduced mass transfer of substrates and products to and from the electrode. Recently, we have demonstrated efficient solar hydrogen production in microgravity environment, using an integrated semiconductor-electrocatalyst system with p-type indium phosphide as the light-absorber and a rhodium electrocatalyst. By nanostructuring the electrocatalyst using shadow nanosphere lithography and thereby creating catalytic 'hot spots' on the photoelectrode surface, we could overcome gas bubble coalescence and mass transfer limitations and demonstrated efficient hydrogen production at high current densities in reduced gravitation. Here, the experimental details are described for the preparations of these nanostructured devices and further on, the procedure for their testing in microgravity environment, realized at the Bremen Drop Tower during 9.3 s of free fall.

Introduction

Our atmosphere on Earth is formed through oxygenic photosynthesis, a 2.3-billion-year-old process converting solar energy into energy-rich hydrocarbons, releasing oxygen as a by-product and using water and CO2 as substrates. Currently, artificial photosynthetic systems following the concept of the energetic Z-scheme of catalysis and charge transfer in natural photosynthesis are realized in semiconductor-electrocatalyst systems, showing hitherto a solar-to-hydrogen conversion efficiency of 19 %1,2,3. In these systems, semiconductor materials are employed as light ab....

Protocol

1. Preparation of p-InP photoelectrodes

  1. Use single crystal p-InP (orientation (111 A), Zn doping concentration of 5 × 1017 cm-3) as the photoabsorber. For the back contact preparation, evaporate 4 nm Au, 80 nm Zn and 150 nm Au on the backside of the wafer and heat it to 400 °C for 60 s.
  2. Apply Ag paste to attach the ohmic contact to a thin-plated Cu wire. Thread the wire to a glass tube, encapsulate the sample and seal it to the glass tube using black, chemical resistant epoxy.
  3. In order to remove native oxides, etch the 0.5 cm2 polished indium face of p-InP for 30 s in 10 mL of bromine/methanol ....

Representative Results

Etching the p-InP surface in Br2/ methanol for 30 s with consecutive photoelectrochemical conditioning of the sample by cycling polarization in HCl is well established in the literature and discussed (e.g., by Schulte & Lewerenz (2001)14,15). The etching procedure removes the native oxide remaining on the surface (Figure 2) and electrochemical cycling in HCl causes furthermore a conside.......

Discussion

For the preparation of photoelectrodes, it is important to minimize oxygen exposure between the etching and conditioning procedure and to purge the 0.5 M HCl before usage for about 10 - 15 min with nitrogen. Once the samples are conditioned, they can be stored under nitrogen atmosphere in 15 mL conical tubes for a few hours to allow sample transport and/ or preparation time of the polystyrene particle masks. In order to achieve a homogenous arrangement of PS spheres on the electrode substrate, it is important to form a c.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

K.B. acknowledges funding from the fellowship program of the German National Academy of Sciences Leopoldina, grant LPDS 2016-06 and the European Space Agency. Furthermore, she would like to thank Dr. Leopold Summerer, the Advanced Concepts Team, Alan Dowson, Dr. Jack van Loon, Dr. Gabor Milassin and Dr. Robert Lindner (ESTEC), Robbert-Jan Noordam (Notese) and Prof. Harry B. Gray (Caltech) for their great support. M.H.R. is grateful for generous support from Prof. Nathan S. Lewis (Caltech). K.B. and M.H.R. acknowledge support from the Beckman Institute of the California Institute of Technology and the Molecular Materials Research Center. The PhotoEChem Team gr....

Materials

NameCompanyCatalog NumberComments
12.7 mm XZ Dovetail Translation Stage with Baseplate, M4 Taps (4 x)ThorlabsDT12XZ/M
Beam splitters (2 x)ThorlabsCM1-BS01350:50 400-700nm
Beamsplitters (2 x)ThorlabsCM1-BS01450:50 700-1100nm
Ohmic back contact: 4 nm Au, 80 nm Zn, 150 nm AuOut e.V., Berlin, Germanyhttps://www.out-ev.de/english/index.htmlCompany provides custom made ohmic back contacts
Glass tube, ca. 10 cm, inner diameter about 4 mmE.g., Gaßner GlasstechnikCustom made
p-InP wafers, orientation 111A, Zn doping concentration: 5 x 10^17 cm^-3AXT Inc. Geo Semiconductor Ltd. SwitzerlandCustom made
Photoelectrochemical cell for terrestrial experimentsE.g., glass/ materials workshopCustom made
Matrox 4Sight GPm (board computer)Matrox imagingIvy Bridge, 7 x Cable Ace power I/O HRS 6p, open 10m, Power Adapter for Matrox 4sight GPm, Samsung 850 Pro 2,5" 1 TB, Solid State Drive in exchange for the 250Gb hard drive
2-propanolSigma AldrichI9516-500ML
35mm Kowa LM35HC 1" Sensor F1.4 C-mount (2 x)Basler AG
AcetoneSigma Aldrich650501-1L
Ag/AgCl (3 M KCl) reference electrodeWPIDRIREF-5
Aluminium breadboard, 450 mm x 450 mm x 12.7mm, M6 Taps (2 x)ThorlabsMB4545/M
Beaker, 100 mLVWR10754-948
Black epoxyElectrolubeER2162
BromineSigma Aldrich1.01945 EMD Millipore
Colour camera (2 x)Basler AGacA2040-25gc
Conductive silver epoxyMG Chemicals8331-14G
Copper wireE.g., Sigma Aldrich349224-150CM
EthanolSigma Aldrich459844-500ML
Falcon tubes, 15 mLVWR62406-200
Glove bagsSigma AldrichZ530212
Hydrochloric acid (1 M)Sigma AldrichH9892
Magnetic stirrerVWR97042-626
MethanolSigma Aldrich34860-100ML-R
Microscope slidesVWR82003-414
MilliQ water
NIR camera (2 x)Basler AGacA1300-60gm
Nitrogen, grade 5NAirgasNI UHP300
Ø 1" Stackable Lens Tubes (6 x)ThorlabsSM1L03
O2 Plasma Facility
OEM Flange to SM Thread Adapters (4 x)ThorlabsSM1F2
ParafilmVWR52858-000
Pasteur pipetteVWR14672-380
Perchloric acid (1 M)Sigma Aldrich311421-50ML
Petri dishVWR75845-546
Photoelectrochemical cell for microgravity experimentsE.g., glass/ materials workshop
Polystyrene particles, 784 nm, 5 % (w/v)Microparticles GmbH0.1-0.99 µm size (50 mg/ml): 10 ml, 15 ml, 50 ml
Potentiostats (2 x)BiologicSP-200/300
Pt counter electrodeALS-Japan12961
Rhodium (III) chloridSigma Aldrich520772-1G
Shutter control system (2 x)
Silicon reference photodiodeThorlabsFDS1010
Sodium chloridSigma Aldrich567440-500GM
Stands and rods to fix the camerasVWR
Sulphuric acid (0.5 M)Sigma Aldrich339741-100ML
Telecentric High Resolution Type WD110 series Type MML1-HR110Basler AG
TolueneSigma Aldrich244511-100ML
Various spare beakers and containers for leftover perchloric acid etc for the drop towerVWR
W-I lamp with light guides (2 x)Edmund OpticsDolan-Jenner MI-150 Fiber Optic Illuminator
CM-12 electron microscope with a twin objective lens, CCD camera (Gatan) system and an energy dispersive spectroscopy of X- rays (EDS) system)Philips
Dimension Icon AFM, rotated symmetric ScanAsyst-Air tips (silicon nitride), nominal tip radius of 2 nmBruker

References

  1. May, M. M., Lewerenz, H. -. J., Lackner, D., Dimroth, F., Hannappel, T. Efficient Direct Solar-to-Hydrogen Conversion by In-Situ Interface Transformation of a Tandem Structure. Nature Communications. 6, 8286 (2015).
  2. Young, J. L., Steiner, M. A., Döscher, H., France, R. M., Turner, J. A., Deutsch, T. G.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

MicrogravitySolar Hydrogen ProductionNanostructured PhotoelectrodesElectrochemical Gas BubblesCatalyst HotspotsIndium PhosphideShadow Nanosphere LithographyRhodium NanostructuresPhotoelectrochemical Conditioning

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved