Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Described here is a protocol to investigate the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems.

Abstract

Human intestinal microorganisms have recently become an important target of research in promoting human health and preventing diseases. Consequently, investigations of interactions between endobiotics (e.g., drugs and prebiotics) and gut microbiota have become an important research topic. However, in vivo experiments with human volunteers are not ideal for such studies due to bioethics and economic constraints. As a result, animal models have been used to evaluate these interactions in vivo. Nevertheless, animal model studies are still limited by bioethics considerations, in addition to differing compositions and diversities of microbiota in animals vs. humans. An alternative research strategy is the use of batch fermentation experiments that allow evaluation of the interactions between endobiotics and gut microbiota in vitro. To evaluate this strategy, bifidobacterial (Bif) exopolysaccharides (EPS) were used as a representative xenobiotic. Then, the interactions between Bif EPS and human gut microbiota were investigated using several methods such as thin-layer chromatography (TLC), bacterial community compositional analysis with 16S rRNA gene high-throughput sequencing, and gas chromatography of short-chain fatty acids (SCFAs). Presented here is a protocol to investigate the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems. Importantly, this protocol can also be modified to investigate general interactions between other endobiotics and gut microbiota.

Introduction

Gut microbiota play an important role in the functioning of human intestines and in host health. Consequently, gut microbiota have recently become an important target for disease prevention and therapy1. Moreover, gut bacteria interact with host intestinal cells and regulate fundamental host processes, including metabolic activities, nutrient availabilities, immune system modulation, and even brain function and decision-making2,3. Endobiotics have considerable potential to influence the bacterial composition and diversity of gut microbiota. Thus, interactions between endobiotics and human gut microbiota have attracted increasing research attention4,5,6,7,8,9.

It is difficult to evaluate interactions between endobiotics and human gut microbiota in vivo due to bioethics and economic constraints. For example, experiments investigating the interactions between endobiotics and human gut microbiota cannot be performed without permission of the Food and Drug Administration, and recruitment of volunteers is expensive. Consequently, animal models are often used for such investigations. However, the use of animal models is limited due to different microbiota compositions and diversity in animal- vs. human-associated communities. An alternative in vitro method to explore the interactions between endobiotics and human gut microbiota is through the use of batch culture experiments.

Exopolysaccharides (EPSs) are prebiotics that significantly contribute to the maintenance of human health10. Distinct EPSs that consist of different monosaccharide compositions and structures can exhibit distinct functions. Previous analyses have determined the composition of Bif EPSs, which are the representative xenobiotic targeted in the current study11. However, host-associated metabolic effects have not been considered with regard to EPS composition and diversity.

The protocol described here uses the fecal microbiota from 12 volunteers to ferment Bif EPSs. Thin-layer chromatography (TLC), 16S rRNA gene high-throughput sequencing, and gas chromatography (GC) are then used in combination to investigate the interactions between EPSs and human gut microbiota. Distinct advantages of this protocol compared to in vivo experiments are its low cost and avoidance of interfering effects from the host’s metabolism. Furthermore, the described protocol can be used in other studies that investigate interactions between endobiotics and human gut microbiota.

Protocol

This protocol follows the guidelines of the ethics committee of Hunan University of Science and Engineering (Hunan, China), and the Zhejiang Gongshang University (Zhejiang, China).

1. Preparation of bacteria

  1. Preparation of bifidobacterium medium broth
    1. Combine the following components in 950 mL of distilled water: meat extract, 5 g/L; yeast extract, 5 g/L; casein peptone, 10 g/L; soytone, 5 g/L; glucose, 10 g/L; K2HPO4, 2.04 g/L; MgSO4·7H2O, 0.22 g/L; MnSO4.H20, 0.05 g/L; NaCl, 5 g/L; Tween 80, 1 mL; salt solution, 40 mL (CaCl2.2H2O, 0.25 g/L; KH2PO4, 1 g/L; NaHCO3, 10 g/L; NaCl, 2 g/L); and resazurin, 0.4 mL (2.5 mg/L). Adjust the pH to 6.8 with 2 M NaOH.
    2. Autoclave at 121 °C for 15 min and allow the broth to cool to room temperature (RT) under anaerobic conditions (10% H2, 10% CO2, 80% N2). Add filter-sterilized cysteine-HCl (0.5 g/L) and mupirocin (5 mg/L) to the medium.
  2. Add an aliquot (50 μL) of frozen Bifidobacterium longum to a culture tube with 5 mL of bifidobacterium medium broth under anaerobic conditions, then culture in an anaerobic incubator for 24 h at 37 °C.

2. Preparation of bifidobacterial EPSs

  1. Preparation of PYG agar medium
    1. Combine the following: peptone, 20 g/L; yeast extract, 10 g/L; glucose, 5 g/L; NaCl, 0.08 g/L; CaCl2, 0.008 g/L; MgSO4·7H2O, 0.008 g/L; K2HPO4, 0.04 g/L; KH2PO4, 0.04 g/L; NaHCO3, 0.4 g/L; agar, 12 g/L. Adjust the pH to 7.2 using 10 M NaOH.
    2. Autoclave the media at 121 °C for 15 min and cool to ~50 °C. Then, per 1 L of medium, add 0.5 mL of filter-sterilized vitamin K1 solution (1 g of vitamin K1 dissolved in 99 mL of 99% ethanol), 5 mL of haemin solution (0.5 g of haemin dissolved in 1 mL of 1 mol/L NaOH, then brought up to 100 mL with distilled water), and 0.5 g of cysteine-HCl.
    3. Before pouring the PYG plates, add filter-sterilized 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-Gal, 0.06 g/L), LiCl·3H2O (5.7 g/L) and mupirocin (5 mg/L) to the medium.
      NOTE: X-Gal and LiCl.3H2O allow the identification of B. longum colonies on plates via coloration changes.
  2. Inoculate 20 μL of B. longum strains (step 1.2) to PYG plates and place in an anaerobic incubator at 37 °C for 72 h.
  3. Collect mucoid bacterial colonies from the PYG plates using a weighing scoop, then completely resuspend in 10 mL of phosphate-buffered saline (PBS) using a vortex oscillator.
    NOTE: The bacterial and EPS mixtures should be resuspended completely by vortexing or pipetting up and down repeatedly until the fibers are completely dissolved in PBS.
  4. Centrifuge the suspension at 6,000 x g for 5 min.
  5. Carefully transfer the supernatants to a new centrifuge tube and mix completely with three volumes of cold 99% ethanol by repeated inversion and blending.
  6. Centrifuge the mixture at 6,000 x g for 5 min and completely remove the supernatants.
  7. Remove the precipitates from the centrifuge tubes by scraping and drying the EPS extracts overnight using a speed vacuum.

3. Preparation of fermentation medium

  1. Preparation of basic culture medium VI
    1. Combine the following: peptone, 3 g/L; tryptone, 3 g/L; yeast extract, 4.5 g/L; mucin, 0.5 g/L; bile salts No. 3, 0.4 g/L; NaCl, 4.5 g/L; KCl, 2.5 g/L; MgCl2·6H2O, 4.5 g/L; 1 mL Tween 80; CaCl2.6H2O, 0.2 g/L; KH2PO4, 0.4 g/L; MgSO4·7H2O, 3.0 g/L; MnCl2·4H2O, 0.32 g/L; FeSO4·7H2O, 0.1 g/L; CoSO4·7H2O, 0.18 g/L; CaCl2·2H2O, 0.1 g/L; ZnSO4·7H2O, 0.18 g/L; CuSO4·5H2O, 0.01 g/L; and NiCl2·6H2O, 0.092 g/L. Adjust the pH to 6.5 with 1 M HCl.
    2. Prepare haemin and cysteine as done in section 2.1 and add after autoclaving and cooling.
  2. Prepare culture media that contains different carbon sources with a VI base media. Prior to autoclaving, add 8 g/L of Bif EPS fibers to medium VI, comprising group VI_Bif. In addition, add 8 g/L starch to medium VI to represent group VI_Starch. Finally, medium VI without addition of a carbon source is used as the control (group VI).
    NOTE: Bif EPS and starch are first dissolved in hot water using a magnetic agitator, then mixed with prepared VI medium.
  3. Autoclave all media at 121 °C for 15 min and allow to cool to RT.
  4. Transfer a subsample (5 mL) of each medium to culture tubes in an anaerobic incubator, and store the remaining media at 4 °C.

4. Human fecal sample preparation

  1. Collect fresh fecal samples immediately following fresh defecation from healthy adult human volunteers using feces containers, and subsequently use for slurry preparation.
    NOTE: Prior to sample collection, all the volunteers should be screened to ensure no receiving of antibiotics, probiotics, or prebiotic treatments for at least 3 months prior to donating samples. In addition, all donors must provide informed, written consent.
  2. Transfer a fresh fecal sample (1 g) to 10 mL of 0.1 M anaerobic PBS (pH 7.0) into glass beakers, then use glass rods to prepare a 10% (w/v) slurry.
  3. Use a 0.4 mM sieve to filter the fecal slurry. Then, use a subsample of the filtered slurry to inoculate batch culture fermentation experiments, and store the remainder at -80 °C for further analyses.
    NOTE: Steps 4.2–4.3 are conducted in an anaerobic chamber.

5. In vitro batch fermentation

  1. Add filtered fecal slurry (500 μL) to the fermentation medium prepared in step 3.2 within an anaerobic chamber, then incubate at 37 °C.
  2. Collect 2 mL of fermented samples at 24 h and 48 h in the anaerobic chamber and then centrifuge outside of the chamber at 6,000 x g for 3 min.
  3. Carefully transfer the supernatants to a new centrifuge tube that will be used for polysaccharide degradation analysis and short-chain fatty acids (SCFAs) measurements.
  4. Store the centrifugation pellets at -80 °C and subsequently use for bacterial genomic DNA extraction.

6. EPS degradation by human fecal microbiota

  1. Load 0.2 μL of fermented supernatants onto pre-coated silica gel-60 TLC aluminum plates, then dry using a hair drier.
  2. Develop the plates in 20 mL of a formic acid/n-butanol/water (6:4:1, v:v:v) solution and dry using a hair drier.
  3. Soak the plates in the orcinol reagent to dye, then dry using a hair drier.
    1. Prepare orcinol reagents by dissolving 900 mg of Lichenol in 25 mL of distilled water then adding 375 mL of ethanol. Subsequently, concentrated sulfuric acid should be slowly added and the solution thoroughly mixed.
  4. Heat plates at 120 °C for 3 min in a baking oven and evaluate degradation of EPS by measuring TLC bands.

7. Effects of EPS on human intestinal microbiota

  1. Freeze-thaw the original fecal samples prepared in step 4.3 and fermented samples prepared in step 5.4.
  2. Extract bacterial genomic DNA (gDNA) from all the samples using a stool bacterial genomic DNA extraction kit following the manufacturer’s instructions.
  3. Determine DNA concentrations, integrities, and size distributions using a micro-spectrophotometer and agar gel electrophoresis.
  4. Conduct PCR of bacterial 16S rRNA genes from the extracted gDNA using the following previously described forward and reverse primers12:
    -forward primer (barcoded primer 338F): ACTCCTACGGGAGGCAGCA
    -reverse primer (806R): GGACTACHVGGGTWTCTAAT
    Use the following thermal cycler conditions:
    1. 94 °C for 5 min.
    2. 94 °C for 30 s.
    3. 55 °C for 30 s.
    4. 72 °C for 1 min.
    5. Repeat 2–4 for 35 cycles
    6. 72 °C for 5 min.
    7. 4 °C hold until removal from thermal cycler.
  5. Conduct high-throughput sequencing of PCR products at a DNA sequencing company using ultra-high throughput microbial community analysis.
  6. Obtain clean, high quality sequences using the Quantitative Insights into Microbial Ecology (QIIME) sequence analysis pipeline13.
  7. Define operational taxonomic units (OTUs) for 16S rRNA gene sequences with greater than 97% nucleotide similarity using bioinformatics tools such as the Mothur software suite14.
  8. Choose a representative sequence from each OTU and use the RDP classifier along with the SILVA taxonomic database to classify representative sequences15.
  9. Calculate Good’s coverage, alpha diversity metrics (including Simpson and Shannon index), and richness (observed number of OTUs) using bioinformatics tools16.

8. Effects of EPS on SCFA production by human intestinal microbiota

  1. Add fermented supernatants (1 mL) prepared in step 5.3 to 2 mL centrifuge tubes.
  2. Add 0.2 mL of 25% (w/v) metaphosphoric acid to each of the samples and thoroughly mix the solutions by vortexing.
  3. Centrifuge the mixtures at 13,000 x g for 20 min and transfer the supernatants to fresh tubes.
  4. Concomitantly, prepare solutions of 120 mM acetic, propionic, butyric, isobutyric, valeric and isovaleric acids. Then, add 1 mL of each prepared acid to 1.2 mL of 25% (w/v) metaphosphoric acid and use as the standard cocktails.
  5. Filter the samples using a 0.22 μM membrane.
  6. Detect SCFA concentrations using high performance gas chromatography according to previously described protocols11,17.
    NOTE: An InertCap FFAP column (0.25 mM x 30 m x 0.25 μM) is used for gas chromatography (GC). SCFA concentrations are then quantified based on peak areas using the single-point internal standard method in the GC Solution software package.

Results

The production of mucoid EPS could be observed in B. longum cultures on PYG plates after anaerobic incubation for 72 h (Figure 1A). Centrifugation of culture scrapes, followed by ethanol precipitation and drying, resulted in the collection of cellulose-like EPS (Figure 1B). Dried EPS and soluble starch were then used as carbon sources for fermentation cultures. TLC was used for oligosaccharide separation and purity analysis due to its low cost and rapid...

Discussion

Significant progress has been made towards understanding human gut microbiota composition and activities over the last decade. As a consequence of these studies, the holobiont concept has emerged, which represents the interactions between hosts and associated microbial communities, such as in between humans and their gut microbiota19,20. Furthermore, humans are even now regarded as superorganisms21, wherein the gut microbiota have been rec...

Disclosures

The authors declare that they have no conflicts of interest. The figures were cited in Yin et al.11.

Acknowledgements

This study was funded by the National Nature Science Foundation of China (No. 31741109), the Hunan Natural Science Foundation (No. 2018JJ3200), and the construct program of applied characteristic discipline in Hunan University of Science and Engineering. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Materials

NameCompanyCatalog NumberComments
0.22 µm membrane filtersMilliporeSLGP033RBUse to filter samples
0.4-mm SieveThermo Fischer308080-99-1Use to prepare human fecal samples
5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-Gal)SolarbioX1010Use to prepare color plate
AceticSigma-Aldrich71251Standard sample for SCFA
AgarSolarbioYZ-1012214The component of medium
Anaerobic chamberElectrotek AW 400SGBacteria culture and fermentation
AutoclaveSANYOMLS-3750Use to autoclave
Bacto soytoneSigma-Aldrich70178The component of medium
Baking ovenShanghai Yiheng Scientific Instruments Co., LtdDHG-9240AUse to heat and bake
Beef ExtractSolarbioG8270The component of medium
Bifidobacterium longum ReuterATCCATCC® 51870™Bacteria
Bile SaltsSolarbioYZ-1071304The component of medium
ButyricSigma-Aldrich19215Standard sample for SCFA
CaCl2SolarbioC7250Salt solution of medium
Capillary columnSHIMADZU-GLInertCap FFAP (0.25 mm × 30 m × 0.25 μm)Used to SCFA detection
Casein PeptoneSigma-Aldrich39396The component of medium
CentrifugeThermo ScientificSorvall ST 8Use for centrifugation
CoSO4.7H2OSolarbioC7490The component of medium
CuSO4.5H2OSolarbio203165The component of medium
Cysteine-HClSolarbioL1550The component of medium
EthanolSigma-AldrichE7023Use to prepare vitamin K1
FeSO4.7H2OSolarbioYZ-111614The component of medium
Formic AcidSigma-Aldrich399388Used to TLC
Gas chromatographyShimadzu CorporationGC-2010 PlusUsed to SCFA detection
Glass beakerFisher ScientificFB10050Used for slurry preparation
GlucoseSolarbioG8760The component of medium
HaeminSolarbioH8130The component of medium
HClSigma-Aldrich30721Basic solution used to adjust the pH of the buffers
IsobutyricSigma-Aldrich46935-UStandard sample for SCFA
Isovaleric AcidsSigma-Aldrich129542Standard sample for SCFA
K2HPO4SolarbioD9880Salt solution of medium
KClSolarbioP9921The component of medium
KH2PO4SolarbioP7392Salt solution of medium
LiCl.3H2OSolarbioC8380Use to prepare color plate
Meat ExtractSigma-Aldrich-Aldrich70164The component of medium
Metaphosphoric AcidSigma-AldrichB7350Standard sample for SCFA
MgCl2.6H2OSolarbioM8160The component of medium
MgSO4.7H2OSolarbioM8300Salt solution of medium
MISEQIlluminaMiSeq 300PE systemDNA sequencing
MnSO4.H20Sigma-AldrichM8179Salt solution of medium
MupirocinSolarbioYZ-1448901Antibiotic
NaClSolarbioYZ-100376Salt solution of medium
NaHCO3Sigma-Aldrich792519Salt solution of medium
NanoDrop ND-2000NanoDrop TechnologiesND-2000Determine DNA concentrations
NaOHSigma-Aldrich30620Basic solution used to adjust the pH of the buffers
n-butanolChemSpider71-36-3Used to TLC
NiCl2Solarbio746460The component of medium
OrcinolSigma-Aldrich447420Used to prepare orcinol reagents
PropionicSigma-Aldrich94425Standard sample for SCFA
QIAamp DNA Stool Mini KitQIAGEN51504Extract bacterial genomic DNA
Ready-to-use PBS powderSangon Biotech (Shanghai) Co., Ltd.A610100-0001Used to prepare the lipid suspension
ResazurinSolarbioR8150Anaerobic Equipment
Speed Vacuum ConcentratorLABCONCOCentriVapUse to prepare EPSs
StarchSolarbioYZ-140602Use to the carbon source
Sulfuric AcidSigma-Aldrich150692Used to prepare orcinol reagents
T100 PCRBIO-RAD1861096PCR amplification
TLC aluminium sheetsMerckMillipore116835Used to TLC
Trypticase PeptoneSigma-AldrichZ699209The component of medium
TryptoneSigma-AldrichT7293The component of medium
Tween 80SolarbioT8360Salt solution of medium
ValericSigma-Aldrich75054Standard sample for SCFA
Vitamin K1Sigma-AldrichV3501The component of medium
Vortex oscillatorScientific IndustriesVortex.Genie2Use to vortexing
Yeast ExtractSigma-AldrichY1625The component of medium
ZnSO4.7H2OSigma-AldrichZ0251The component of medium

References

  1. Maarten, V. D. G., Blottière Hervé, M., Doré, J. Humans as holobionts: implications for prevention and therapy. Microbiome. 6 (1), 81 (2018).
  2. Allen, A. P., Dinan, T. G., Clarke, G., Cryan, J. F. A psychology of the human brain-gut-microbiome axis. Social and Personality Psychology Compass. 11 (4), e12309 (2017).
  3. Arora, T., Bäckhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine. 280, 39-349 (2016).
  4. Maurice, C., Haiser, H., Turnbaugh, P. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 152 (1-2), 39-50 (2013).
  5. Carmody, R. N., Turnbaugh, P. J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. Journal of Clinical Investigation. 124 (10), 4173-4181 (2014).
  6. Lu, K., Mahbub, R., Fox, J. G. Xenobiotics: interaction with the intestinal microflora. ILAR Journal. 56 (2), 218-227 (2015).
  7. Taguer, M., Maurice, C. The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: implications for clinical outcomes. Clinical Pharmacology & Therapeutics. 99 (6), 588-599 (2016).
  8. Anubhav, D., Meenakshi, S., Shankar, G. T., Mande, S. S., Wilson, B. A. Xenobiotic metabolism and gut microbiomes. PLoS One. 11 (10), e0163099 (2016).
  9. Koppel, N., Rekdal, V. M., Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science. 356 (6344), 1246-1257 (2017).
  10. Hidalgo-Cantabrana, C., et al. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology. 80 (1), 9-18 (2014).
  11. Liu, G., et al. Effects of bifidobacteria-produced exopolysaccharides on human gut microbiota in vitro. Applied Microbiology and Biotechnology. , 1-10 (2018).
  12. Tang, R., et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 67 (3), 534-541 (2018).
  13. Kuczynski, J., et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology. 27 (1), 1-28 (2012).
  14. Hiltemann, S. D., Boers, S. A., van der Spek, P. J., Jansen, R., Hays, J. P., Stubbs, A. P. Galaxy mothur Toolset (GmT): a user-friendly application for 16S rRNA gene sequencing analysis using mothur. GigaScience. , (2018).
  15. Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 73 (16), 5261-5267 (2007).
  16. Schloss, P. D., et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75 (23), 7537-7541 (2009).
  17. Bai, S., et al. Comparative study on the in vitro effects of pseudomonas aeruginosa and seaweed alginates on human gut microbiota. Plos One. 12 (2), e0171576 (2017).
  18. Zhang, Z., Xie, J., Zhang, F., Linhardt, R. J. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Analytical Biochemistry. 371, 118-120 (2007).
  19. Simon, J. C., Marchesi, J. R., Mougel, C., Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 7 (5), (2019).
  20. Postler, T. S., Ghosh, S. Understanding the Holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metabolism. 26 (1), 110-130 (2017).
  21. Kramer, P., Bressan, P. Humans as superorganisms: how microbes, viruses, imprinted genes, and other selfish entities shape our behavior. Perspectives on Psychological Science. 10 (4), 464-481 (2015).
  22. Malfertheiner, P., Nardone, G. Gut microbiota: the forgotten organ. Digestive Diseases. 29 (6), (2011).
  23. Andoh, A. The gut microbiota is a new organ in our body. The Japanese journal of Gastro-Enterology. 112 (11), 1939-1946 (2015).
  24. Mika, A., Van, W. T., González, A., Herrera, J. J., Knight, R., Fleshner, M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male f344 rats. PLoS One. 10 (5), e0125889 (2015).
  25. Hugenholtz, F., de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences. 75 (1), 149-160 (2018).
  26. Takagi, R., et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One. 11 (8), e0160533 (2016).
  27. Ning, T., Gong, X., Xie, L., Ma, B. Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Frontiers in Microbiology. 8 (1), 1620 (2017).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

EndobioticsHuman Gut MicrobiotaIn Vitro FermentationHigh throughput ScreeningBIF EPSStarch SolutionAnaerobic IncubationFecal SlurryPolysaccharide DegradationShort chain Fatty AcidsTLC AnalysisElectrophoresisOrcinol ReagentFermentation Media

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved