Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the establishment of a tumor-bearing mouse model to monitor tumor progression and angiogenesis in real-time by dual bioluminescence imaging.

Abstract

Angiogenesis, as a crucial process of tumor progression, has become a research hotspot and target of anti-tumor therapy. However, there is no reliable model for tracing tumor progression and angiogenesis simultaneously in a visual and sensitive manner. Bioluminescence imaging displays its unique superiority in living imaging due to its advantages of high sensitivity, strong specificity, and accurate measurement. Presented here is a protocol to establish a tumor-bearing mouse model by injecting a Renilla luciferase-labeled murine breast cancer cell line 4T1 into the transgenic mouse with angiogenesis-induced Firefly luciferase expression. This mouse model provides a valuable tool to simultaneously monitor tumor progression and angiogenesis in real-time by dual bioluminescence imaging in a single mouse. This model may be widely applied in anti-tumor drug screening and oncology research.

Introduction

Angiogenesis is an essential process in the progression of cancer from small, localized neoplasms to larger, potentially metastatic tumors1,2. The correlation between tumor growth and angiogenesis becomes one of the points of emphasis in the field of oncology research. However, traditional methods of measuring morphologic changes fail to monitor tumor progression and angiogenesis simultaneously in living animals using a visualized approach.

Bioluminescence imaging (BLI) of tumor cells is a particularly appropriate experimental method to monitor tumor growth because of its non-invasi....

Protocol

Experiments must comply with national and institutional regulations concerning the use of animals for research purposes. Permissions to carry out experiments must be obtained. The treatment of animals and experimental procedures of the study adhere to the Nankai University Animal Care and Use Committee Guidelines that conform to the Guidelines for Animal Care approved by the National Institutes of Health (NIH).

1. LV-Rluc-RFP (RR) and LV-Rluc-RFP-HSV-ttk (RRT) lentiviral packaging and production.......

Representative Results

In this experiment, a breast cancer mouse model was established using 4T1 cells to investigate the relationship between tumor growth and tumor angiogenesis (Figure 1). Firstly, two lentivirus were packaged, which carried gene sequences expressing Rluc/RFP (LV-RR) and Rluc/RFP/HSV-ttk (LV-RRT), respectively, as previously reported7. Then, two different 4T1 cell lines, named 4T1-RR and 4T1-RRT, were created by transducing LV-RR and LV-RR.......

Discussion

In this protocol, a non-invasive dual BLI approach is described for monitoring tumor development and angiogenesis. The BLI reporter system is first developed, containing the HSV-ttk/GCV suicide gene for tracking tumor progression and regression in vivo by Rluc imaging. Meanwhile, tumor angiogenesis is assessed using Vegfr2-Fluc-KI mice via Fluc imaging. This tumor-bearing mouse model is able to provide a practical platform for continuous and non-invasive tracking tumor development and tumor angiogenesis by dual BLI in a .......

Acknowledgements

This research was supported by National Key R&D Program of China (2017YFA0103200), National Natural Science Foundation of China (81671734), and Key Projects of Tianjin Science and Technology Support Program (18YFZCSY00010), Fundamental Research Funds for the Central Universities (63191155). We acknowledge the Gloria Nance’s revisions, which were valuable in improving the quality of our manuscript.

....

Materials

NameCompanyCatalog NumberComments
0.25% Trypsin-0.53 mM EDTAGibco25200072
1.5 mL TubesAxygen ScientificMCT-105-C-S
15 mL TubesCorning Glass Works601052-50
293TATCCCRL-3216
4T1ATCCCRL-2539
60 mm DishCorning Glass Works430166
6-well PlateCorning Glass Works3516
Biosafety CabinetShanghai Lishen ScientificHfsafe-900LC
Blasticidine S Hydrochloride (BSD)Sigma-Aldrich15205
Cell Counting Kit-8MedChem ExpressHY-K0301
CO2 Tegulated IncubatorThermo Fisher Scientific4111
Coelenterazine (CTZ)NanoLight Technology479474
D-luciferin Potassium SaltCaliper Life Sciences119222
DMEM MediumGibcoC11995500BT
Fetal Bovine Serum (FBS)BIOIND04-001-1A
Fluorescence MicroscopeNikonTi-E/U/S
Ganciclovir (GCV)Sigma-AldrichY0001129
Graphics SoftwareGraphPad SoftwareGraphpad Prism 6
Insulin Syringe NeedlesBecton Dickinson328421
IsofluraneBaxter691477H
Lentiviral Packaging SystemBiosettiacDNA-pLV03
LiposomeInvitrogen11668019
Living Imaging SoftwareCaliper Life SciencesLiving Imaging Software 4.2
Living Imaging SystemCaliper Life SciencesIVIS Lumina II
MEM MediumInvitrogen31985-070
Penicillin-StreptomycinInvitrogen15140122
Phosphate Buffered Saline (PBS)Corning Glass WorksR21031399
PolybreneSigma-AldrichH9268-1G
RPMI1640 MediumGibcoC11875500BT
SORVALL ST 16R CentrifugeThermo Fisher ScientificThermo Sorvall ST 16 ST16R
Ultra-low Temperature RefrigeratorHaierDW-86L338
XGI-8 Gas Anesthesia SystemXENOGEN Corporation7293

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine. 285, 1182-1186 (1971).
  2. Kerbel, R. S. Tumor angiogenesis. The New England Journal of Medicine. 358, 2039-2049 (2008).
  3. Hosseinkhani, S.

Explore More Articles

Bioluminescence ImagingTumor ProgressionAngiogenesisBreast CancerFirefly LuciferaseRenilla LuciferaseLentivirus293T CellsTumor MetastasisAntitumor Drug ScreeningOncology ResearchTherapeutic StrategiesTumor RegressionMolecular Processes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved