A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol shows a simple and flexible approach for the evaluation of new conditioning agents or strategies to increase the feasibility of cardiac donation after circulatory death.
Cardiac transplantation demand is on the rise; nevertheless, organ availability is limited due to a paucity of suitable donors. Organ donation after circulatory death (DCD) is a solution to address this limited availability, but due to a period of prolonged warm ischemia and the risk of tissue injury, its routine use in cardiac transplantation is seldom seen. In this manuscript we provide a detailed protocol closely mimicking current clinical practices in the context of DCD with continuous monitoring of heart function, allowing for the evaluation of novel cardioprotective strategies and interventions to decrease ischemia-reperfusion injury.
In this model, the DCD protocol is initiated in anesthetized Lewis rats by stopping ventilation to induce circulatory death. When systolic blood pressure drops below 30 mmHg, the warm ischemic time is initiated. After a pre-set warm ischemic period, hearts are flushed with a normothermic cardioplegic solution, procured, and mounted onto a Langendorff ex vivo heart perfusion system. Following 10 min of initial reperfusion and stabilization, cardiac reconditioning is continuously evaluated for 60 min using intraventricular pressure monitoring. A heart injury is assessed by measuring cardiac troponin T and the infarct size is quantified by histological staining. The warm ischemic time can be modulated and tailored to develop the desired amount of structural and functional damage. This simple protocol allows for the evaluation of different cardioprotective conditioning strategies introduced at the moment of cardioplegia, initial reperfusion and/or during ex vivo perfusion. Findings obtained from this protocol can be reproduced in large models, facilitating clinical translation.
Solid organ transplantation in general and cardiac transplantation, in particular, are on the rise worldwide1,2. The standard method of organ procurement is donation after brain death (DBD). Given the strict inclusion criteria of DBD, less than 40% of the offered hearts are accepted3, thereby limiting the offer in face of increasing demand and extending the organ waiting list. To address this issue, the use of organs donated after circulatory death (DCD) is considered a potential solution4.
In DCD donors, however, an agonal phase following withdrawal of care and a period of unprotected warm ischemia before resuscitation are inevitable5. The potential organ injury after circulatory death can lead to organ dysfunction, explaining the reluctance to routinely adopt DCD heart transplantations. It is reported that only 4 centers use DCD hearts clinically, with stringent criteria that includes very short warm ischemia times and young donors without chronic pathologies6,7. For ethical and legal reasons, limited or no cardioprotective interventions can be applied in donors prior to circulatory death5,8,9. Thus, any mitigation to alleviate the ischemia-reperfusion (IR) injury is limited to cardioprotective therapies initiated during early reperfusion with cardioplegic solutions, and do not allow for proper functional assessment. Ex vivo heart perfusion (EVHP) and reconditioning of the DCD heart using dedicated platforms has been proposed as an alternative solution and studied by various scholars10,11,12,13. EVHP offers a unique opportunity to deliver post-conditioning agents to DCD hearts to improve functional recovery. However, for efficient clinical translation, many technical and practical issues remain to be addressed, and this is further compounded by a lack of consensus on a range of perfusion and functional criteria to determine transplantability6,8.
Herein we report the development of a reproducible pre-clinical small animal DCD protocol combined with an ex vivo heart perfusion system that can be used to investigate organ post-conditioning initiated at the time of procurement, during initial reperfusion, and/or throughout EVHP.
All animal care and experimental protocols conformed to the Guide for the Care and Use of Laboratory Animals and were approved by the institutional animal care and use committee of the Centre Hospitalier de l’Université de Montréal Research Center.
1. Preliminary Preparations
2. Animal Preparation
3. Initiation of Cardiac Donation After Circulatory Death (DCD) Protocol
NOTE: A complete protocol timeline can be seen in Figure 2.
4. Ex Vivo Heart Perfusion System (EVHP) and Cardiac Functional Assessment
5. End of Experience
6. Data analyses
Following extubation, blood pressure rapidly drops in a predictable pattern (Figure 3). Expected time to death is less than 5 min.
Figure 4 shows an average pressure/time curve at the start of reconditioning following 0, 10 and 15 min of WIT. Contractile function will improve over time. The use of short periods of WIT will allow for contractility to return to normal, and morphological damage will not be detectable (
The protocol presented here introduces a simple, convenient and versatile model of cardiac DCD, offering the opportunity to assess cardiac functional recovery, tissue damage and the use of post-conditioning cardioprotective agents to improve recovery of donor hearts otherwise discarded for transplantation. Ex vivo heart perfusion systems (EVHP) systems have been optimized to provide a platform for evaluating cardiac function and offer a unique opportunity to deliver and test modified solutions supplemented with post-cond...
The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.
Portions of this work were supported by a generous contribution by the Fondation Marcel et Rolande Gosselin and Fondation Mr Stefane Foumy. Nicolas Noiseux is scholar of the FRQ-S.
The authors wish to thanks Josh Zhuo Le Huang, Gabrielle Gascon, Sophia Ghiassi, and Catherine Scalabrini for their support in data collection.
Name | Company | Catalog Number | Comments |
0.9% Sodium Chloride. 1 L bag | Baxter | Electrolyte solution for flushing in the modified Langendorff system. | |
14 G 2" I.V catheter | Jelco | 4098 | To act as endotracheal tube. |
2,3,5-Triphenyltetrazolium chloride | Milipore-Sigma | T8877 | Vital coloration |
22 G 1" I.V catheter | BD | 383532 | I.V catheter with extension tube that facilitates manipulation for carotid catheterization |
Adson Dressing Fcp, 4 3/4", Serr | Skalar | 50-3147 | Additional forceps for tissue manipulation |
Alm Self-retaining retractor 4x4 Teeth Blunt 2-3/4" | Skalar | 22-9027 | Tissue retractor used to maintain the chest open. |
Bridge amp | ADinstruments | FE221 | Bridge amp for intracarotid blood pressure measurement |
Calcium chloride | Milipore-Sigma | C1016 | CaCl2 anhydrous, granular, ≤7.0 mm, ≥93.0% Part of the Krebs solution |
D-(+)-Glucose | Milipore-Sigma | G8270 | D-Glucose ≥99.5% Part of the Krebs solution |
DIN(8) to Disposable BP Transducer | ADinstruments | MLAC06 | Adapter cable for link between bridge amp and pressure transducer |
Disposable BP Transducer (stopcock) | ADinstruments | MLT0670 | Pressure transducer for intracarotid blood pressure measurement |
dPBS | Gibco | 14190-144 | Electrolyte solution without calcium or magnesium. |
Eye Dressing Fcp, Str, Serr, 4" | Skalar | 66-2740 | Additional forceps for tissue manipulation |
Formalin solution, neutral buffered, 10% | Milipore-Sigma | HT501128 | Fixative solution |
Heating Pad | Sunbean | 756-CN | |
Heparin sodium 1,000 UI/mL | Sandoz | For systemic anticoagulation | |
Hydrochloric Acid 36,5 to 38,0% | Fisher scientific | A144-500 | Diluted 1:1 for pH correction |
Ketamine | Bimeda | Anesthetic. 100 mg/mL | |
LabChart | ADinstruments | Control software for the Powerlab polygraph, allowing off-line analyses. Version 7, with blood pressure and PV loop modules enabled | |
Left ventricle pressure balloon | Radnoti | 170404 | In latex. Size 4. |
Lidocaine HCl 2% solution | AstraZeneca | Antiarrhythmic for the cardioplegic solution | |
Magnesium Chloride ACS | ACP Chemicals | M-0460 | MgCl2+6H2O ≥99.0% Part of the Krebs solution |
Micro pressure sensor | Radnoti | 159905 | Micro pressure sensor and amplifier connected to the intraventricular balloon |
Pacemaker | Biotronik | Reliaty | Set to generate a pulse each 200 ms for a heart rate of 300 bpm. |
pH bench top meter | Fisher scientific | AE150 | |
Physiological monitor | Kent Scientific | Physiosuite | For continuous monitoring of rodent temperature and saturation during the procedure |
Plasma-Lyte A | Baxter | Electrolyte solution used as base to prepare cardioplegia | |
Potassium Chloride | Milipore-Sigma | P4504 | KCl ≥99.0% Part of the Krebs solution |
Potassium Chloride 2 meq/ml | Hospira | Part of the cardioplegic solution | |
PowerLab 8/30 Polygraph | ADinstruments | Electronic polygraph | |
Silk 2-0 | Ethicon | A305H | Suture material for Langendorff apparatus |
Silk 5-0 | Ethicon | A302H | Suture material for carotid |
Small animal anesthesia workstation | Hallowell EMC | 000A2770 | Small animal ventilator |
Sodium bicarbonate | Milipore-Sigma | S5761 | NaHCO3 ≥99.5% Part of the Krebs solution |
Sodium Chloride | Milipore-Sigma | S7653 | NaCl ≥99.5% Part of the Krebs solution |
Sodium Hydroxide pellets | ACP chemicals | S3700 | Diluted to 5 N (10 g in 50 mL) for pH correction |
Sodium phosphate monobasic | Milipore-Sigma | S0751 | NaH2PO4 ≥99.0% Part of the Krebs solution |
Stevens Tenotomy Sciss, Str, Delicate, SH/SH, 4 1/2" | Skalar | 22-1240 | Small scisors for atria and cava vein opening |
Tissue slicer blades | Thomas scientific | 6727C18 | Straight carbon steel blades for tissue slicing at the end of the protocol |
Tuberculin safety syringe with needle 25 G 5/8" | CardinalHealth | 8881511235 | For heparin injection |
Veterinary General Surgery Set | Skalar | 98-1275 | Surgery instruments including disection scisors and mosquito clamps |
Veterinary Micro Set | Skalar | 98-1311 | Surgery instruments with microscisors used for carotid artery opening |
Working Heart Rat/Guinea Pig/Rabbit system | Radnoti | 120101BEZ | Modular working heart system modified for the needs of the protocol. Includes all the necesary tubbing, water jacketed reservoirs and valves, including 2 and 3 way stop cock |
Xylazine | Bayer | Sedative. 20 mg/mL |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved