JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Described are protocols for the highly efficient genome editing of murine hematopoietic stem and progenitor cells (HSPC) by the CRISPR/Cas9 system to rapidly develop mouse model systems with hematopoietic system-specific gene modifications.

Abstract

Manipulating genes in hematopoietic stem cells using conventional transgenesis approaches can be time-consuming, expensive, and challenging. Benefiting from advances in genome editing technology and lentivirus-mediated transgene delivery systems, an efficient and economical method is described here that establishes mice in which genes are manipulated specifically in hematopoietic stem cells. Lentiviruses are used to transduce Cas9-expressing lineage-negative bone marrow cells with a guide RNA (gRNA) targeting specific genes and a red fluorescence reporter gene (RFP), then these cells are transplanted into lethally-irradiated C57BL/6 mice. Mice transplanted with lentivirus expressing non-targeting gRNA are used as controls. Engraftment of transduced hematopoietic stem cells are evaluated by flow cytometric analysis of RFP-positive leukocytes of peripheral blood. Using this method, ~90% transduction of myeloid cells and ~70% of lymphoid cells at 4 weeks after transplantation can be achieved. Genomic DNA is isolated from RFP-positive blood cells, and portions of the targeted site DNA are amplified by PCR to validate the genome editing. This protocol provides a high-throughput evaluation of hematopoiesis-regulatory genes and can be extended to a variety of mouse disease models with hematopoietic cell involvement.

Introduction

Many studies in hematology and immunology rely on the availability of genetically modified mice, including conventional and conditional transgenic/knock-out mice that utilize hematopoietic system-specific Cre drivers such as Mx1-Cre, Vav-Cre, and others1,2,3,4,5. These strategies require the establishment of new mouse strains, which can be time-consuming and financially burdening. While revolutionary advances in genome editing technology have enabled the generation of new mouse strains in as few as 3-4 months with the appropriate technical expertise6,7,8,9, much more time is required to amplify the mouse colony before experiments are pursued. In addition, these procedures are costly. For example, Jackson Laboratory lists the current price of knock-out mice generation services at $16,845 per strain (as of December 2018). Thus, methods that are more economical and efficient than conventional murine transgenic approaches are more advantageous.

Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology has led to the development of new tools for rapid and efficient RNA-based, sequence-specific genome editing. Originally discovered as a bacterial adaptive immune mechanism to destroy invading pathogen DNA, the CRISPR/Cas9 system has been used as a tool to increase the effectiveness of genome editing in eukaryotic cells and animal models. A number of approaches have been employed to transmit CRISPR/Cas9 machinery into hematopoietic stem cells (i.e., electroporation, nucleofection, lipofection, viral delivery, and others).

Here, a lentivirus system is employed to transduce cells due to its ability to effectively infect Cas9-expressing murine hematopoietic stem cells and package together the guide RNA expression construct, promoters, regulatory sequences, and genes that encode fluorescent reporter proteins (i.e., GFP, RFP). Using this method, ex vivo gene editing of mouse hematopoietic stem cells has been achieved, followed by successful reconstitution of bone marrow in lethally irradiated mice10. The lentivirus vector employed for this study expresses the Cas9 and GFP reporter genes from the common core EF1a promoter with an internal ribosomal entry site upstream from the reporter gene. The guide RNA sequence is expressed from a separate U6 promoter. This system is then used to create insertion and deletion mutations in the candidate clonal hematopoiesis driver genes Tet2 and Dnmt3a10. However, the transduction efficiency by this method is relatively low (~5%-10%) due to the large size of the vector insert (13 Kbp) that limits transduction efficiency and reduces virus titer during production.

In other studies, it has been shown that larger viral RNA size negatively affects both virus production and transduction efficiency. For example, a 1 kb increase in insert size is reported to decrease virus production by ~50%, and transduction efficiency will decrease to more than 50% in mouse hematopoietic stem cells11. Thus, it is advantageous to reduce the size of the viral insert as much as possible to improve efficiency of the system.

This shortcoming can be overcome by employing Cas9 transgenic mice, in which the Cas9 protein is expressed in either a constitutive or inducible manner12. The constitutive CRISPR/Cas9 knock-in mice expresses Cas9 endonuclease and EGFP from the CAG promoter at the Rosa26 locus in a ubiquitous manner. Thus, a construct with sgRNA under the control of the U6 promoter and RFP reporter gene under the control of the core EF1a promoter can be delivered using the lentivirus vector to achieve genome editing. With this system, the genes of hematopoietic stem cells have been successfully edited, showing a ~90% transduction efficiency. Thus, this protocol provides a rapid and effective method to create mice in which targeted gene mutations are introduced into the hematopoietic system. While our lab is predominantly using this type of technology to study the role of clonal hematopoiesis in cardiovascular disease processes13,14,15, it is also applicable to studies of hematological malignancy16. Furthermore, this protocol can be extended to the analysis of how DNA mutations in HSPC impact other disease or developmental processes in the hematopoietic system.

To establish a robust lentivirus vector system, high titer viral stocks and optimized conditions for the transduction and transplantation of hematopoietic cells are required. In the protocol, instructions are provided on the preparation of a high titer viral stock in section 1, optimizing the culture conditions of murine hematopoietic stem cells in section 2, methods for bone marrow transplantation in section 3, and assessing engraftment in section 4.

Protocol

All procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Virginia.

1. Generation and purification of lentivirus particles

NOTE: Lentivirus particles containing the optimized guide RNA can be produced by the detailed protocols provided by Addgene: <https://media.addgene.org/cms/files/Zhang_lab_LentiCRISPR_library_protocol.pdf)>. Optimized methods for high-titer lentivirus preparation and storage are discussed elsewhere17,18. In brief, lentiviruses are produced by co-transfection of a lentivirus vector plasmid, psPAX2, and pMD2.G into HEK 293T cells. Culture supernatant is collected at 48 h post-transfection and concentrated by ultracentrifugation. Lentiviral titer is determined by a commercially available qPCR-based assay. This procedure should be performed in a biosafety class II cabinet.

  1. Prepare a 1:200 solution of collagen (0.0005%) in 1x PBS.
  2. Coat a 6 well plate with collagen solution and incubate at 37 °C, 5% CO2 for ~30 min.
  3. Seed 293T cells at a density of 1 x 106 cells per well and incubate at 37 °C, 5% CO2 for ~2 h.
  4. To prepare the mixture of three transfection plasmids for one well, combine 0.9 µg of lentivirus vector, 0.6 µg of psPAX2, and 0.3 µg of pMD2.G, then achieve a total volume of 10 µL by adding deionized water. Adjust amounts accordingly depending on the number of wells. The amount and ratio of each plasmid may need to be further optimized to suit the researchers needs.
  5. Carefully add 50 µL of 1x PBS and 5 µL of the diluted PEI MAX (1.0 mg/mL) to the plasmid mixture and incubate for 15 min at room temperature (RT) (Table 1).
  6. Add 1 mL of DMEM to the mixture.
  7. Aspirate media from the 6 well plate, add 1 mL of plasmid mixture, and incubate at 37 °C, 5% CO2 for ~3 h.
  8. Replace the media with 2 mL of fresh DMEM and incubate at 37 °C, 5% CO2 for 24 h.
  9. Add 1 mL of fresh DMEM and incubate at 37 °C, 5% CO2 for an additional 24 h (total incubation time is 48 h).
  10. Transfer the culture supernatant to a 50 mL tube and centrifuge at 3,000 x g for 15 min to remove any free-floating cells.
  11. Filter the supernatant through a 0.45 µm filter.
  12. Transfer the filtrate to polypropylene centrifuge tubes.
  13. Ultracentrifuge at 4 °C and 72,100 x g at rmax for 3 h.
  14. Carefully aspirate the supernatant, leaving behind the white pellet.
  15. Resuspend the pellet with 100 µL of serum-free hematopoietic cell expansion medium without aeration.
  16. Keep a 10 µL aliquot to measure the viral titer and store all remaining aliquots at -80 °C until required.
  17. Titrate the virus with a qPCR-based assay according to the manufacturer's instructions using the 10 µL viral aliquot.

2. Isolation and transduction of lineage-negative cells from mouse bone marrow (Figure 1A)

NOTE: Typically, to isolate enough cells, pairs of tibias, femurs, and humeri are harvested from each mouse. Pelvic and spinal bones may also be harvested as a source of lineage-negative cells.

  1. Isolation of bone marrow cells
    1. Euthanize 8-10 week old male CRISPR/Cas9 knock-in mice by 5% isoflurane followed by cervical dislocation, then disinfect their skin with 70% ethanol.
    2. Using dissecting scissors, make a transverse incision in the skin just below the ribcage and peel the skin distally in both directions to expose the legs and arms.
    3. Carefully separate the lower limbs from the hip bone by dislocating the hip joint. Cut along the femur head to remove the femur completely from the hip. Dislocate the knee and cut at the joint to separate the femur and tibia, while keeping the bone epiphysis intact. Dislocate the ankle joint and peel away the foot and extra muscle.
    4. Using dissecting scissors, cut over the shoulder to detach the upper limbs. Dislocate the shoulder, then cut at the elbow joint to harvest the humerus bone.
    5. Use cellulose-fiber wipes to carefully remove muscles from the femurs, tibias, and humeri. Take extra precaution to ensure that the bones do not break during this process.
    6. Place the isolated bones into a 50 mL conical tube containing RPMI, and place on ice.
      NOTE: The following steps should be carried out in a biosafety class II cabinet.
    7. Transfer the bones into a sterile, 100 mm culture dish.
    8. Grasp the bone with blunt forceps, and using dissecting scissors, carefully cut both epiphyses.
      NOTE: An insufficient cutting will lead to an incomplete flush of bone marrow, while overly aggressive cutting will result in cell loss.
    9. Fill a 10 mL syringe with ice-cold RPMI, and using a 22 G needle, flush the bone marrow from the shaft into a new 100 mm culture dish.
      NOTE: Bones will become white and translucent if the bone shaft has been well-flushed. If not, re-cut the bone ends and flush again.
    10. After all the bone marrow has been collected, make a single-cell suspension by passing the bone marrow several times through a 10 mL syringe with an 18 G needle. Repeat 10x to ensure a single-cell suspension.
    11. Filter cell suspension through a 70 µm cell strainer into a 50 mL conical tube.
    12. Centrifuge at 310 x g for 10 min at 4 °C.
    13. Aspirate the supernatant and resuspend the cell pellets in an appropriate volume of optimized separation buffer for the following cell separation process.
  2. Isolation and lentivirus transduction of lineage-negative cells
    ​NOTE: Mouse lineage-negative cells are isolated from the bone marrow of Cas9 transgenic mice3, or other strains of mice, using a lineage depletion kit according to the manufacturer's instructions. Typically, lineage-negative cells account for 2%-5% of whole bone marrow nucleated cells, and the purity is usually greater than 90% following isolation. The isolated lineage-negative cells are cultured in serum-free hematopoietic cell expansion medium supplemented with 20 ng/mL recombinant murine TPO and 50 ng/mL recombinant murine SCF, then transduced with the lentivirus vector for 16 h at a multiplicity of infection (MOI) = 100.
    1. To isolate lineage-negative cells, use the lineage cell depletion kit according to the manufacturer's instructions.
    2. After isolation resuspend the lineage-negative cells in 1 mL of serum-free hematopoietic cell expansion medium.
    3. Seed the cells into a 6 well plate at a density of 1.5 x 106 cells/mL (5 x 105 lineage-negative cells/mouse.)
    4. Add recombinant murine TPO and SCF into wells at final concentrations of 20 ng/mL and 50 ng/mL, respectively.
    5. Pre-incubate cells at 37 °C in 5% CO2 for ~2 h.
    6. Add lentivirus at MOI = 100, 4 µg/mL polybrene, and penicillin/streptomycin to the wells and incubate at 37 °C, 5% CO2 for 16-20 h (Figure 1B).
    7. On the following day, collect the lentivirus transduced cells into a 15 mL conical tube and centrifuge at 300 g for 10 min.
    8. Carefully aspirate the supernatant and resuspend the pellet in 200 µL of RPMI per mouse. Keep the cells at RT until transplantation into mice (section 3).

3. Transplantation of transduced cells into lethally irradiated mice

  1. On the day of bone marrow transplantation, place recipient mice into an eight-slice pie cage and expose them to two doses of whole body irradiation (550 Rad/dose, total dose = 1100 Rad), with approximately 4 h between each irradiation session.
  2. After the second irradiation session, inject transduced lineage-negative cells to each anesthetized recipient mouse via the retro-orbital vein plexus (200 µL in total) using an insulin syringe (Figure 1C).
  3. After irradiation, mice should be housed in sterilized cages and provided with a soft diet and drinking water supplemented with antibiotics for 14 d.
  4. At 3-4 weeks after bone marrow transplantation, analyze peripheral blood to check for the engraftment of transduced donor cells (section 4).

4. Evaluating the chimerism of peripheral blood

  1. Anesthetize mice with 5% isoflurane and obtain a blood sample from a retro-orbital vein using capillary tubes, and collect it into K2EDTA tubes (the volume in one capillary tube is sufficient for the following assay).
  2. Transfer 20 µL of blood from the K2EDTA tubes into the 5 mL round bottom polystyrene test tubes, and put on ice.
  3. Add 1.5 mL of RBC lysis buffer to lyse red blood cells. Incubate for 5 min on ice.
  4. To neutralize the lysis buffer, wash samples with FACS buffer (1.5 mL/sample).
  5. Centrifuge at 609 x g at rmax for 5 min at 4 °C. Discard the supernatant.
  6. Incubate the cells with a cocktail of monoclonal antibodies (diluted in 100 µL FACS buffer/sample) at RT for 20 min in the dark. A complete list of antibodies is provided in the Materials section above.
  7. Wash the cells once with FACS buffer (2 mL/sample). Centrifuge at 609 x g at rmax (1,800 rpm) for 5 min at 4 °C. Discard the supernatant completely.
  8. Fix the cells with paraformaldehyde containing fixation buffer (100 µL/tube) for 10 min at 4 °C.
  9. Wash cells once with FACS buffer (3 mL/sample). Centrifuge at 609 x g at rmax (1,800 rpm) for 5 min at 4 °C. Discard the supernatant completely.
  10. Suspend the pellet in 400 µL of FACS buffer.
  11. Keep the samples at 4 °C until analysis by flow cytometry.

Results

Using the above described protocol, approximately 0.8-1.0 x 108 bone marrow cells per mouse have been obtained. The number of lineage-negative cells we obtain is approximately 3 x 106 cells per mouse. Typically, the yield of bone marrow lineage-negative cells is 4%-5% of that of total bone marrow nuclear cells.

Chimerism of transduced cells (RFP-positive) is evaluated by flow cytometry of the peripheral blo...

Discussion

The advantage of this protocol is the creation of animal models harboring specific mutations in hematopoietic cells in a rapid and highly cost-effective manner compared to conventional mouse transgenic approaches. It was found that this methodology enables the generation of mice with hematopoietic cell gene-manipulations within 1 month. There are several critical steps in this protocol that require further consideration.

Screening of gRNA sequence

...

Disclosures

The authors have nothing to disclose.

Acknowledgements

S. S. was supported by an American Heart Association postdoctoral fellowship 17POST33670076. K. W. was supported by NIH grants R01 HL138014, R01 HL141256, and R01 HL139819.

Materials

NameCompanyCatalog NumberComments
RPMI Medium 1640 (1X)Gibco11875-093Medium
Sulfamethoxazole and Trimethoprim injectionTEVA0703-9526-01
1/2 cc LO-DOSE INSULIN SYRINGEEXELINT26028general supply
293T cellsATCCCRL-3216--Cell line
APC-anti-mouse Ly6C (Clone AL-21)BD Biosciences560599Antibodies
APC-Cy7-anti-mouse CD45R (RA3-6B2)BD Biosciences552094Antibodies
BD Luer-Lok disposable syringes, 10 mlBD309604general supply
BD Microtainer blood collection tubes, K2EDTA addedBD Bioscience365974general supply
BD Precisionglide needle, 18 GBD305195general supply
BD Precisionglide needle, 22 G BD305155general supply
BV510-anti-mouse CD8a (Clone 53-6.7)Biolegend100752Antibodies
BV711-anti-mouse CD3e (Clone 145-2C11)Biolegend100349Antibodies
Collagen from calf skinSigma-Aldrich9007-34-5general supply
Corning Costar Ultra-Low Attachment Multiple Well Plate, 6 well Millipore SigmaCLS3471general supply
CRISPR/Cas9 knock-in miceThe Jackson Laboratory028555mouse
DietGel 76AClear H2O70-01-5022general supply
Dulbecco’s Modified Eagle’s Medium (DMEM) - high glucoseSigma AldrichD6429Medium
eBioscience 1X RBC Lysis BufferThermo fisher Scientific00-4333-57Solution
Falcon 100 mm TC-Treated Cell Culture DishLife Sciences353003general supply
Falcon 5 mL round bottom polystyrene test tubeLife Sciences352054general supply
Falcon 50 mL Conical Centrifuge TubesFisher Scientific352098general supply
Falcon 6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate Life Science353046general supply
Fisherbrand microhematocrit capillary tubesThermo Fisher Scientific22-362566general supply
Fisherbrand sterile cell strainers, 70 μmFisher Scientific22363548general supply
FITC-anti-mouse CD4 (Clone RM4-5)Invitrogen11-0042-85Antibodies
Fixation BufferBD Bioscience554655Solution
Guide-it Compete sgRNA Screening SystemsClontech632636Kit
Isothesia (Isoflurane) solutionHenry Schein29404Solution
Lenti-X qRT-PCR Titration Kit Takara631235Kit
Lineage Cell Depletion Kit, mouseMiltenyi Biotec130-090-858Kit
Millex-HV Syringe Filter Unit, 0.45 mmMillipore SigmaSLHV004SLgeneral supply
PBS pH7.4 (1X)Gibco10010023Solution
PE-Cy7-anti-mouse CD115 (Clone AFS98)eBioscience25-1152-82Antibodies
PEI MAXPolysciences24765-1Solution
Penicillin-Streptomycin MixtureLonza17-602FSolution
PerCP-Cy5.5-anti-mouse Ly6G (Clone 1A8)BD Biosciences560602Antibodies
pLKO5.sgRNA.EFS.tRFP Addgene57823Plasmid
pMG2DAddgene12259Plasmid
Polybrene Infection/Transfection ReagentSigma AldrichTR-1003-GSolution
Polypropylene Centrifuge TubesBECKMAN COULTER326823general supply
psPAX2 Addgene12260Plasmid
RadDisk – Rodent Irradiator DiskBraintree ScientificIRD-P Mgeneral supply
Recombinant Murine SCFPeprotech250-03Solution
Recombinant Murine TPO Peprotech 315-14Solution
StemSpan SFEMSTEMCELL Technologies09600Solution
TOPO TA cloning kit for sequencing with One Shot TOP10 Chemically Competent E.coliThermo fisher ScientificK457501Kit
Zombie Aqua Fixable Viability KitBioLegend423102Solution 

References

  1. Sasaki, Y., et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO Journal. 32, 2463-2476 (2013).
  2. Ogilvy, S., et al. Transcriptional regulation of vav, a gene expressed throughout the hematopoietic compartment. Blood. 91, 419-430 (1998).
  3. Meyer, S. E., et al. DNMT3A Haploinsufficiency Transforms FLT3ITD Myeloproliferative Disease into a Rapid, Spontaneous, and Fully Penetrant Acute Myeloid Leukemia. Cancer Discovery. 6, 501-515 (2016).
  4. Kuhn, R., Schwenk, F., Aguet, M., Rajewsky, K. Inducible gene targeting in mice. Science. 269, 1427-1429 (1995).
  5. Cole, C. B., et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. Journal of Clinical Investigation. 126, 85-98 (2016).
  6. Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154, 1370-1379 (2013).
  7. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153, 910-918 (2013).
  8. Quadros, R. M., et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology. 18, 92 (2017).
  9. Miura, H., Quadros, R. M., Gurumurthy, C. B., Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knock-out mouse models using long ssDNA donors. Nature Protocols. 13, 195-215 (2018).
  10. Sano, S., et al. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circulation Research. 123, 335-341 (2018).
  11. Cante-Barrett, K., et al. Lentiviral gene transfer into human and murine hematopoietic stem cells: size matters. BMC Research Notes. 9 (312), (2016).
  12. Chu, V. T., et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Sciences of the United States of America. 113, 12514-12519 (2016).
  13. Fuster, J. J., et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 355, 842-847 (2017).
  14. Sano, S., et al. Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1beta/NLRP3 Inflammasome. Journal of the American College of Cardiology. 71, 875-886 (2018).
  15. Sano, S., Wang, Y., Walsh, K. Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. Circulatory Journal. 71, 875-886 (2018).
  16. Heckl, D., et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature Biotechnology. 32, 941-946 (2014).
  17. Jiang, W., et al. An optimized method for high-titer lentivirus preparations without ultracentrifugation. Scientific Reports. 5, 13875 (2015).
  18. Cribbs, A. P., Kennedy, A., Gregory, B., Brennan, F. M. Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnology. 13, 98 (2013).
  19. Brinkman, E. K., Chen, T., Amendola, M., van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research. 42, e168 (2014).
  20. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., Pruett-Miller, S. M. A Survey of Validation Strategies for CRISPR-Cas9 Editing. Scientific Reports. 8, 888 (2018).
  21. Akcakaya, P., et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. 561, 416-419 (2018).
  22. Bae, S., Park, J., Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 30, 1473-1475 (2014).
  23. Kosicki, M., Tomberg, K., Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology. 36, 765-771 (2018).
  24. El-Brolosy, M. A., et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 568, 193-197 (2019).
  25. Ma, Z., et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 568, 259-263 (2019).
  26. Gilbert, L. A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154, 442-451 (2013).
  27. Qi, L. S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152, 1173-1183 (2013).
  28. Zhou, H., et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nature Neuroscience. 21, 440-446 (2018).
  29. Fuster, J. J., Walsh, K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circulatory Research. 122, 523-532 (2018).
  30. Kahn, J. D., et al. PPM1D truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. , (2018).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Lentiviral CRISPRGenome EditingHematopoietic CellsGene ManipulationAnimal ModelsTransgene DeliveryTransfection Plasmids293T CellsViral TiterDMEMRPMICell Culture TechniquesHematopoietic Cell Expansion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved