A subscription to JoVE is required to view this content. Sign in or start your free trial.
GPCR-β-arrestin interactions are an emerging field in GPCR drug discovery. Accurate, precise and easy to set up methods are necessary to monitor such interactions in living systems. We show a structural complementation assay to monitor GPCR-β-arrestin interactions in real time living cells, and it can be extended to any GPCR.
Interactions between G-protein coupled receptors (GPCRs) and β-arrestins are vital processes with physiological implications of great importance. Currently, the characterization of novel drugs towards their interactions with β-arrestins and other cytosolic proteins is extremely valuable in the field of GPCR drug discovery particularly during the study of GPCR biased agonism. Here, we show the application of a novel structural complementation assay to accurately monitor receptor-β-arrestin interactions in real time living systems. This method is simple, accurate and can be easily extended to any GPCR of interest and also it has the advantage that it overcomes unspecific interactions due to the presence of a low expression promoter present in each vector system. This structural complementation assay provides key features that allow an accurate and precise monitoring of receptor-β-arrestin interactions, making it suitable in the study of biased agonism of any GPCR system as well as GPCR c-terminus ‘phosphorylation codes’ written by different GPCR-kinases (GRKs) and post-translational modifications of arrestins that stabilize or destabilize the receptor-β-arrestin complex.
GPCRs represent the target of nearly 35% of current drugs in the market1,2 and a clear understanding of their pharmacology is crucial in the development of novel therapeutic drugs3. One of the key aspects in GPCR drug discovery, particularly during the development of biased agonists is the characterization of novel ligands towards receptor-β-arrestin interactions4 and β-arrestin interactions with other cytosolic proteins such as clathrin5.
It has been documented that β-arrestin dependent signaling....
1. Primer design strategy
Using the procedure presented here, interactions between a prototypical GPCR and two β-arrestin isoforms were monitored. Glucagon like peptide receptor (GLP-1r) constructs were made using primers containing NheI and EcoRI enzyme restriction sites and cloned into the vectors pBiT1.1-C [TK/LgBiT] and pBiT2.1-C [TK/SmBiT] while in the case of β-arrestins, two additional vectors were used pBiT1.1-N [TK/LgBiT] and pBiT2.1-N [TK/SmBiT] using enzyme restriction sites BgIII and EcoRI in the case of β-arrestin2 and.......
Using the method presented here, interactions between any GPCR and β-arrestin1/2 can be monitored in real time living systems using this GPCR-β-arrestin structural complementation assay. In this regard, we were able to observe differential β-arrestin recruitment between the two β-arrestin isoforms by the GLP-1r (A prototypical Class B GPCR), we also observed a dissociation of the receptor-β-arrestin complex a few minutes after reaching the maximum luminescent signal.
I.......
This work was supported by grants from the Research Program (NRF- 2015M3A9E7029172) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning.
....Name | Company | Catalog Number | Comments |
Antibiotics penicillin streptomycin | Welgene | LS202-02 | Penicillin/Streptomycin |
Bacterial Incubator | JEIO Tech | IB-05G | Incubator (Air-Jacket), Basic |
Cell culture medium | Welgene | LM 001-05 | DMEM Cell culture medium |
Cell culture transfection medium | Gibco | 31985-070 | Optimem 1X cell culture medium |
CO2 Incubator | NUAIRE | NU5720 | Direct Heat CO2 Incubator |
Digital water bath | Lab Tech | LWB-122D | Digital water bath lab tech |
DNA Polymerase proof reading | ELPIS Biotech | EBT-1011 | PfU DNA polymerase |
DNA purification kit | Cosmogenetech | CMP0112 | miniprepLaboPass Purificartion Kit Plasmid Mini |
DNA Taq Polymerase | Enzynomics | P750 | nTaq DNA polymerase |
Enzyme restriction BglII | New England Biolabs | R0144L | BglII |
Enzyme restriction buffer | New England Biolabs | B72045 | CutSmart 10X Buffer |
Enzyme restriction EcoRI | New England Biolabs | R3101L | EcoRI-HF |
Enzyme restriction NheI | New England Biolabs | R01315 | NheI |
Enzyme restriction XhoI | New England Biolabs | R0146L | XhoI |
Fetal Bovine Serum | Gibco Canada | 12483020 | Fetal Bovine Serum |
Gel/PCR DNA MiniKit | Real Biotech Corporation | KH23108 | HiYield Gel/PCR DNA MiniKit |
Ligase | ELPIS Biotech | EBT-1025 | T4 DNA Ligase |
Light microscope | Olympus | CKX53SF | CKX53 Microscope Olympus |
lipid transfection reagent | Invitrogen | 11668-019 | Lipofectamine 2000 |
Luminometer | Biotek/Fisher Scientific | 12504386 | Synergy 2 Multi-Mode Microplate Readers |
NanoBiT System | Promega | N2014 | NanoBiT PPI MCS Starter System |
Nanoluciferase substrate | Promega | N2012 | Nano-Glo Live Cell assay system |
PCR Thermal cycler | Eppendorf | 6336000015 | Master cycler Nexus SX1 |
Poly-L-lysine | Sigma Aldrich | P4707-50ML | Poly-L-lysine solution |
Trypsin EDTA | Gibco | 25200-056 | Trysin EDTA 10X |
White Cell culture 96 well plates | Corning | 3917 | Assay Plate 96 well plate |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved