A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
The goal of the protocol is to provide an industrialized fish fermentation technique based on inoculation of Saccharomyces cerevisiae.
This protocol provides a method for preparation of industrialized fermented fish product with sturgeon (Aquilaria sinensis) meat product. The procedures were: (1) pretreatment of farmed sturgeon including decapitation, evisceration, skinning-off, cleaning and cutting; (2) marinating fish cubes in 6-12% (w/v) salt solution (1:1, fish cube mass to solution volume); (3) drying fish cubes to a water content of 50-60% by hot air (40-60 °C) or by vacuum; (4) fermentation involving inoculating fish cubes with 0.4-1.6% (w/w) S. cerevisiae in flavor solution to fish cubes and fermenting at 25-35 °C for 6-10 h; (5) sealing fish cubes in vacuum packages with marinating and fermenting solutions; (6) sterilizing at 115-121 °C for 10-20 min. The sturgeon meat product prepared by this method has delicious taste which is mellow and thick, has various types and large amounts of volatile flavor compounds such as alcohols and esters which could mask musty and unpleasant odor from fish, has moderate salt content but good texture properties such as high springiness, gumminess and chewiness, and has bright russet color and attractive appearance. This new technique could also be applied in the processing of other fish to provide convenient fish snack foods which could be stored at room temperature. It is appropriate for both marine and freshwater fish.
Current commercial marinated fish product in China has the problem of heavy salty taste, insufficient wine aroma, poor elasticity and pale color, which decreases the acceptability to consumers. Therefore, a new technique for a high-quality fish meat product with wine aroma needs to be created and optimized.
In recent years, application of modern fermentation techniques in meat and fish has attracted attention from more and more researchers1,2,3,4. By inoculation of starter cultures into meat and fish, food safety has been enhanced, the processing time has been shortened; and the product sensory properties have been modified. Saithong et al.5 isolated lactobacillus bacteria (LAB) from natural plaa-som and used this LAB as a starter culture, which induced high acidity and suppressed pathogenic bacteria. Zeng et al.6 reported that inoculation with the autochthonous starter cultures reduced fermentation time and improved the sensory properties of samples. Casaburi et al.7 claimed that the use of microbial starter cultures influence the development of aroma in fermented meats. In these starter cultures, S. cerevisiae could produce wine aroma by alcoholic fermentation and could also give the product other improved organoleptic qualities. Therefore, S. cerevisiae is a suitable starter culture for wine-aroma products8,9,10 and wine-aroma fish product could be made by S. cerevisiae.
In the process of making wine-aroma fish product, the texture of meat and fish could be affected by salt content, water content, pH, protein denaturation, etc. Therefore, marinating, drying, fermentation and sterilization could all influence the texture characteristics. The formation of flavor and taste is complicated and is mainly affected by marinating and fermentation, because it is highly related to hydrolysis of carbohydrates, proteins and lipids, and mild lipid oxidation11,12. It could also be affected by addition of spices13. For development of color, Maillard reaction occurs which is involved in the process of fermentation and sterilization10.
This article could provide technical support for the industrialization of fermented fish product with wine aroma, which is of great significance to the development of the fish processing industry. This technique could improve taste of product by increased proteolysis (more free amino acids and TCA-soluble peptides), modify flavor mainly by alcohols (ethanol, 1-octen-3-ol, 2-methyl-1-propanol and 3-methyl-1-butanol), esters (ethyl acetate) and aldehydes (nonanal, 3-methylbutanal and benzaldehyde), increase mouthfeel by higher hardness, springiness, gumminess and chewiness, and give more attractive russet color by and a bright surface14. It also gives consumers convenience because the product can be stored at room temperature. As described by other previous studies15,16,17, fermentation with S. cerevisiae has also been proved to significantly improve organoleptic qualities in other meat or fish products.
It is worth noting that the introduced protocol could also be applied in other species of fish, such as grass carp, silver carp, black carp, bighead carp, cod, salmon, etc. For high quality of fish products, fish without processing should be used, such as fresh fish, fish in ice or frozen fish stored for less than 1 year. Besides, since mild lipid oxidation could enhance flavor while extensive lipid oxidation brings unpleasant flavor, fish with less fat is preferred or skimmed fish is recommended.
1. Sample preparation
2. Estimation of shelf life of fermented sturgeon meat product
NOTE: The estimation of shelf life of fermented sturgeon meat product uses accelerated shelf life testing (ASLT) method with Arrhenius model according to the method of Wahyuni et al. with some modifications18.
3. Chemical analysis
4. Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS) analysis
NOTE: We measure flavor according to the method of Gao et al. with some modification17.
5. Texture profile analysis
NOTE: Analyze texture profile by following a previous study20.
6. Color measurement
NOTE: Measure color according to the method of Czerner et al. with some modifications21.
7. Sensory evaluation
Quality parameter | Description | Score |
Taste | Acceptable sweet and salty; harmonious taste; wine taste; not astringent | 8-10 |
Too heavy or light (sweet or salty); harmonious taste; wine taste; not astringent | 6-8 | |
Too heavy or light (sweet or salty); light wine- and after- taste; astringent | 3-6 | |
Too light wine- and after- taste; obviously astringent | 0-3 | |
Flavor | Mellow wine flavor; rich fermentation aroma; no weird smell | 8-10 |
Mellow wine flavor; light fermentation aroma; no weird smell | 6-8 | |
Light wine flavor; light fermentation aroma; light weird smell | 3-6 | |
No wine aroma; light fermentation aroma; obviously weird smell | 0-3 | |
Appearance | Russet color; glossy appearance; bright surface | 8-10 |
Russet color; bright surface | 6-8 | |
Yellow color; nonuniform | 3-6 | |
Pale color; rough surface | 0-3 | |
Texture | Acceptable chewiness | 8-10 |
Hard | 6-8 | |
Light springiness | 3-6 | |
Soft texture; coarse mouth-feel | 0-3 |
Table 1: Scoring criteria for sensory quality of fermented wine-aroma sturgeon meat product.
The suitable salt concentration, marinating time and temperature make the product’s textural quality better. The best marinating conditions were as follows: the salt concentration of 8% in the marinating solution; marinating time of 2 h; and marinating temperature of 10 °C. See Figure 1.
In drying process, the final moisture content and drying temperature could influence the texture and sensory quality. The best drying conditions were as follows: moistu...
In this study, a new technique for the production of high-quality fermented fish product with wine aroma and tests for sensory properties are provided. The key processes of this technique are marinating, drying, fermentation and sterilization. In the marinating process, the salt concentration, the temperature and the time all affect the textural properties of the fish. The hardness and chewiness of the product increase gradually with the increase of salt concentration (0-12%, w/v) and the prolongation of marinating time ...
The authors have nothing to disclose.
This research was financially supported by the earmarked fund for Jiangsu Natural Science Fund (BK20170185), Project from Jiangsu Fisheries Administrator (Y2017-30), National Natural Science Foundation of China (NFSC31801575), China Agricultures Research System (CARS-45-26), national first-class discipline program of Food Science and Technology (JUFSTR20180201), and Yi Tong-Jiangsu Postdoctoral Program.
Name | Company | Catalog Number | Comments |
2,4,6-trimethylpyridine | Tokyo Chemical Industry Co., Ltd. | Purity 98% | |
Colorimeter | Hunterlab | UltraScan Pro1166 | |
DB-WAX column | Agilent | 30 m × 0.25 mm × 0.25μm | |
Digital pH meter | Mettler toledo Instrument (Shanghai) Co., Ltd. | DELTA-320 | |
Drying oven | Shanghai Yiheng Scientific Instrument Co., Ltd. | DHG-9070A | |
Frozen sturgeon | Huada Marine Industry Group Co., Ltd | - | |
Gas chromatograph-mass spectrometer | Thermo Fisher Scientific | TSQ Quantum XLS | |
Humidities incubator | Shanghai Yiheng Scientific Instrument Co., Ltd. | LHS-250HC-II | |
Saccharomyces cerevisiae | Angel Yeast Co., Ltd | - | |
Spices | Auchan Supermarket | - | |
Sterilization pot | Longqiang Machinery Technology Co., Ltd. | RHS-03-700 | |
Supelco | Sigma | 65μm, PDMS/DVB | |
Texture analyzer | Stable Micro Systems, Ltd. | TA-XT2i | |
Vacuum package machine | Quanzhou Yiminxin Electromechanical Co., Ltd. | YMX-958-10L |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved