JoVE Logo

Sign In

Abstract

Neuroscience

Computer-based Multitaper Spectrogram Program for Electroencephalographic Data

Published: November 13th, 2019

DOI:

10.3791/60333

1Department of Psychology, University of Tennessee, 2Department of Anesthesiology, University of Tennessee, 3Oak Ridge National Laboratory

Abstract

Current web resources provide limited, user friendly tools to compute spectrograms for visualizing and quantifying electroencephalographic (EEG) data. This paper describes a Windows-based, open source code for creating EEG multitaper spectrograms. The compiled program is accessible to Windows users without software licensing. For Macintosh users, the program is limited to those with a MATLAB software license. The program is illustrated via EEG spectrograms that vary as a function of states of sleep and wakefulness, and opiate-induced alterations in those states. The EEGs of C57BL/6J mice were wirelessly recorded for 4 h after intraperitoneal injection of saline (vehicle control) and antinociceptive doses of morphine, buprenorphine, and fentanyl. Spectrograms showed that buprenorphine and morphine caused similar changes in EEG power at 1−3 Hz and 8−9 Hz. Spectrograms after administration of fentanyl revealed maximal average power bands at 3 Hz and 7 Hz. The spectrograms unmasked differential opiate effects on EEG frequency and power. These computer-based methods are generalizable across drug classes and can be readily modified to quantify and display a wide range of rhythmic biological signals.

Explore More Videos

Keywords Multitaper Spectrogram

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved