Abstract
Neuroscience
Current web resources provide limited, user friendly tools to compute spectrograms for visualizing and quantifying electroencephalographic (EEG) data. This paper describes a Windows-based, open source code for creating EEG multitaper spectrograms. The compiled program is accessible to Windows users without software licensing. For Macintosh users, the program is limited to those with a MATLAB software license. The program is illustrated via EEG spectrograms that vary as a function of states of sleep and wakefulness, and opiate-induced alterations in those states. The EEGs of C57BL/6J mice were wirelessly recorded for 4 h after intraperitoneal injection of saline (vehicle control) and antinociceptive doses of morphine, buprenorphine, and fentanyl. Spectrograms showed that buprenorphine and morphine caused similar changes in EEG power at 1−3 Hz and 8−9 Hz. Spectrograms after administration of fentanyl revealed maximal average power bands at 3 Hz and 7 Hz. The spectrograms unmasked differential opiate effects on EEG frequency and power. These computer-based methods are generalizable across drug classes and can be readily modified to quantify and display a wide range of rhythmic biological signals.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved